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Statistics: big picture
There is some process in the world (universe?) that we want to understand

We assume that this process has a data-generating mechanism

Collect data

Make inference



Estimation process
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Always think 
about what is 
known, unknown 
and what you 
want to know.



Two paradigms
Inference is where statisticians make their money

Two primary philosophical schools of thought:

Frequentist                         Bayesian



Frequentist
The data (Y) is treated as random

Parameters (theta) are treated as fixed

Statistical procedures have properties in the long 
run, i.e., high frequency

R. A. Fisher
20th century



Frequentist estimation
How does a frequentist estimate theta?

Maximum likelihood estimation:

Given your model, what values of theta make the data you saw the most likely 

Yields point estimates, confidence intervals, hypothesis testing, etc.

Explaining estimates is not always intuitive



Bayesian
The data (Y) is treated as fixed

Parameters (theta) are treated as random

Subjective belief about parameters

Belief about parameters is updated as you 
observe data

Arguably, how a rational person operates

Thomas Bayes
18th century



Toy example
A new ice cream shop opens in Durham

You want to determine how good it is.

The “goodness” of the restaurant is some unknown parameter Θ which takes values 
between 0 and 10.

Goal is to estimate Θ



Toy example
You are a tough critic so without knowing anything else, you say that there is a 95% 
chance that Θ is between 2 and 6

Your friends went and said it is the best ice cream they have ever had. Your still 
skeptical but now you think Θ is likely between 3 and 8.

You go to the parlor and are very impressed with the ice cream. You think that Θ is 
probably 8.5. But you only went once so it could have been a fluke. You think that 
there is a 95% chance that Θ is between 8 and 9.

Notice that your belief about the “goodness” of the ice cream (as measured by Θ) is 
updated each time you get new data



Bayes Theorem
How can we do this belief updating in a principled way? Bayes theorem

Posterior distribution of Θ
(reflects information about Θ 
after observing the data; 
what we want) 

Likelihood 
of seeing 
the data
(same as in 
frequentist)

Prior distribution
(reflects your 
current information 

about Θ) 



Conditional probability
Bayes theorem relies heavily on conditional probability 

In life (and statistics), often times we have some information to inform our beliefs 
(probability) about an outcome (event)

This is conditional probability 

Let’s look at the ice cream example for conditional probability



Conditional probability
Before talking with anyone, there is a 95% chance that Θ is between 2 and 6 

This is an unconditional probability: P(Θ)

After talking to your friends, you have some new information. Now your probability 
statement is conditional on this new information: P(Θ | friend’s recommendation)

After you taste the ice cream, you have even more information. Again, the 
probability is now conditional on all previous information: 

P(Θ | your experience and friend’s recommendation)



Conditional probability and Bayes theorem
Let’s look at Bayes theorem again

Think of the probability as summarizing our information about Θ, which is ultimately 
what we are after.

 

Distribution of Θ is 
conditional on the observed 
data Y 

Distribution 
of Y is 
conditional 
on the value 
of Θ 

Prior distribution of 
Θ is unconditional 
on the data. Could 
also think of it as 
conditional on 
previous studies



Key point

Frequentists: all information about Θ comes from the data 

Bayesians: information for Θ comes from the data AND prior

Choosing the prior is important and a lively research area 
and is certainly relevant for your work 



Simple example
Let’s mathematically work through a simple example.

Let Θ be the “goodness” of the ice cream parlor. Θ can 
take values 1, 2 or 3

Before tasting the ice cream, you think that all possible 
values of Θ are equally likely, i.e., P(Θ=1) = P(Θ=2) = 
P(Θ=3) = ⅓. This is your prior distribution

Let Y be the observed tastiness of the ice cream. Y can 
also take values 1, 2, or 3.

You try the ice cream and observe Y=3, it was really 
good.

The probability of observing Y=3 depends on the value 
of Θ.

P(Y=1|Θ) P(Y=2|Θ) P(Y=3|Θ)

Θ=1 0.6 0.3 0.1

Θ=2 0.25 0.5 0.25

Θ=3 0.2 0.2 0.6



Simple example
You want to calculate the probability that Θ=3, given your observation

Let’s use Bayes theorem:

P(Θ=3 | Y=3) 

= {P(Y=3 | Θ=3) P(Θ=3)} / P(Y=3)

= {P(Y=3 | Θ=3) P(Θ=3)} / {P(Y=3|Θ=1) P(Θ=1) + P(Y=3|Θ=2) P(Θ=2) + P(Y=3|Θ=3) P(Θ=3)}

= (0.6 * 0.33) / (0.1 * 0.33 + 0.25*0.33 + 0.6 *0.33)

= 0.63

Interpretation: There is a 63% chance that Θ=3, given the observed data.

Notice that this value is between your prior (0.33) and likelihood (0.70)



A note on randomness
Before you observe the data, Y is a random variable

After you observe the data, then you have a realization of the random variable, y

This is fixed now and no longer random

Random here means having a distribution which Reetam will discuss more fully

For frequentists, Θ is fixed. Not random, does not have a distribution

For Bayesians, Θ is random. It does have a distribution which changes after you 
observe data.



More on Random Variables
This example had a bi-variate distribution.

You can get the individual distributions of Θ 
and Y from this table

Θ (and Y) take 3 unique values, and you 
distribute the total probability (i.e., 1) among 
those 3 values.

But what if was Θ had 1000 unique 
outcomes? What if Θ was continuous?

P(Y=1|Θ) P(Y=2|Θ) P(Y=3|Θ)

Θ=1 0.6 0.3 0.1

Θ=2 0.25 0.5 0.25

Θ=3 0.2 0.2 0.6



Frequencies to distributions
Toss a coin once. What is the probability distribution of the number of Heads?

Let Y be the outcomes; Y = {0, 1}

Let θ be the probability of getting a Head. If you assume a fair coin, θ = 0.5

P[Y = 1 | θ] = θ and P[Y = 0 | θ] = 1 - θ

P[Y = y | θ] = θy.(1 - θ)1-y, for y = 0, 1 - this is called a Bernoulli distribution.

What if you toss a coin 100 times? What is the space of outcomes?

https://shiny.rit.albany.edu/stat/binomial/ 

https://shiny.rit.albany.edu/stat/binomial/


Bernoulli to Binomial
Let Y be the number of Heads when you toss a coin 100 times.

P[Y = y] = nCy θ
y (1 - θ)n-y, y = 0, 1 ,..., 100.

This is called a Binomial distribution.

Important things to consider before we take the next steps:

1. This outcome space is still discrete and finite
2. We can observe the underlying experiment/mechanism
3. The coin tosses are independent of each other and identical, i.e.,

P[Y1 = y1, Y2 = y2] = P[Y1 = y1].P[Y2 = y2]



The uses of a distribution
Since distributions tend to have a functional form, we can compute quantities of 
interest analytically instead of having to compute them by hand from a histogram.

E.g., if Y ~ Binomial(n, θ)

Mean of Y = n.θ (This is called the expectation of Y and denoted as E[Y|θ])

Variance of Y = n.θ.(1 - θ)

We can also get individual probabilities like P[Y = 15 | θ], or P[10 < Y < 20 | θ]

The support of Y is 0, 1, …, n. The support of θ is (0,1)



Uncertainty
For a scientific question, is it always possible to:

1. Know the exact underlying mechanism/experiment?
2. Observe the mechanism, its outcome, or both?
3. Observe it with certainty?



The Poisson distribution
We’ll develop an example based on this post from Brookhaven - 
https://snews.bnl.gov/popsci/poisson.html

How many meteors will hit the Earth’s atmosphere per day?

Assumptions:

1. The fact that one event happens does not change the probability that another 
event will happen later (independent and identical events)

2. We don’t observe the underlying mechanism (exactly, at least)
3. No practical upper limit for how many events we can have, i.e., Y = 0, 1, 2,......

https://snews.bnl.gov/popsci/poisson.html


The Poisson distribution
Let Y = number of meteor hits in an hour.

Let θ = rate of meteor hits.

P[Y = y|θ] = e-θ.θy / y!

E[Y|θ] = V[Y|θ] = θ

If we have data, we can estimate θ

If we have data and prior information on θ, we could estimate a distribution of θ



A frequentist analysis
A satellite has been able to observe every single meteor hit for the last 24 hours, 
and has aggregated the number of hits per hour.

(y1, .., y24) = (10,  5,  6,  7, 11,  5, 10, 11,  8,  8,  3,  5,  5,  8,  6,  9,  7,  8, 14,  6,  9, 11,  5,  8)

E[Y|θ] = 7.71, V[Y|θ] = 6.73. What is the rate of meteor hits?

Frequentist estimate using R:

Parameters:

       estimate Std. Error

lambda 7.708333  0.5667279

What if we had some prior information about θ?



The Gamma distribution
Let θ = time between two events. For example:

● The time until your phone will die
● Time until the next meteor will hit

We can model it as a Gamma distribution

θ > 0 , and is continuous!

Can be (mathematically, not practically) infinite.



The Gamma distribution
f(θ | a, b) = k.e-θb θa-1

a > 0, b > 0, k is a proportionality constant such that f(.) integrates to 1

E[θ|a,b] = a/b, V[θ|a,b] = a/b2

Time between events, on an average, is a/b

So b/a events happen every time period (b is in fact, known as a rate as well)

What is P[θ = c|a,b] for any c > 0?

We can only talk in terms of inequalities for continuous random variables

Back to our example! - https://snews.bnl.gov/popsci/poisson.html

https://snews.bnl.gov/popsci/poisson.html


Bayes Theorem
How can we do this belief updating in a principled way? Bayes theorem

Posterior distribution of Θ
(reflects information about Θ 
after observing the data; 
what we want) 

Likelihood 
of seeing 
the data
(same as in 
frequentist)

Prior distribution
(reflects your 
current information 

about Θ) 



Bayesian analysis

Since θ is continuous, we will use f(.) instead of P[.] throughout

Y|θ ~ Poisson distribution, and θ~Gamma distribution

Note that P[Y] is basically a proportionality constant, can be ignored going forward

What should be choose for a and b?

If we choose a = 0.1, b = 0.1/5.8, we will have a prior whose mean is close to what is suggested by previous experiments



The prior distribution
> meteor
 [1] 10  5  6  7 11  5 10 11  8  8  3  5  5  8  
6  9  7  8 14  6  9 11  5  8
> a = 0.1; b = 0.1/5.8
> prior1 = rgamma(10000,a,b)
> mean(prior1)
[1] 5.818053
> var(prior1)
[1] 346.2627
> h1 = hist(prior1)
> xx = seq(0.00001,50,by=0.01)
> yy = dgamma(xx,a,b)*diff(h1$mids[1:2]) *10000
> lines(xx,yy,'l')
> abline(v=mean(meteor))



Bayes theorem math

That looks like a Gamma distribution?

The posterior of θ will follows a 
Gamma distribution with parameters
a* = a + Σyi = 185.58
b* = b + 24 = 24.1

This property, where the posterior 
has the same distributional form as 
the prior, is called conjugacy.

https://en.wikipedia.org/wiki/Conjugate_prior 

https://en.wikipedia.org/wiki/Conjugate_prior


The posterior distribution
> a_star = a + sum(meteor)
> b_star = b + length(meteor)
> posterior1 = 
rgamma(10000,a_star,b_star)
> h1 = hist(posterior1)
> mean(posterior1)
[1] 7.709147
> var(posterior1)
[1] 0.3190985
> sd(posterior1)
[1] 0.5558348

The posterior of θ follows a Gamma distribution with parameters a*, b*

Centered around 7.71 (similar to the frequentist case)



Frequentist inference
Based on the sample of observations, the mean is around 7.71, SE = 0.57

Because it’s a sample, there is noise, and this isn’t completely accurate

Maybe if you had a much larger sample, you can ‘identify’ θ more accurately

But it’s still just a fixed value - there is fuzziness around it but you don’t know what 
that fuzziness looks like mathematically

What is P[5 < θ < 10 | Y]?

If you have new data, you either pool it, or start over



θ|Y follows a Gamma distribution with mean 7.1 and variance 0.56

We can make probability statements!

If we get new data, we can treat this as the prior and update our beliefs about θ

Physical processes are rarely deterministic, so this is intuitive 

Bayesian inference

> pgamma(10,a_star,b_star) - pgamma(5,a_star,b_star)
[1] 0.9999036
> pgamma(7.8,a_star,b_star) - pgamma(5.8,a_star,b_star)
[1] 0.5744631
> 1 - pgamma(10,a_star,b_star)
[1] 9.638848e-05



Doing this in JAGS
Maybe you don’t want to do all the math

The math is often complicated for

1. More complicated models
2. When the prior is not conjugate (this is often - conjugacy is convenient but not 

necessarily the best option)

Software include base R, JAGS, STAN, Python, Julia



Other relevant resources
Distributions:

1. Normal: https://en.wikipedia.org/wiki/Normal_distribution
2. Beta: https://en.wikipedia.org/wiki/Beta_distribution (Special case: Uniform)
3. Exponential: https://en.wikipedia.org/wiki/Exponential_distribution (special 

case of Gamma)

List of conjugate priors: https://en.wikipedia.org/wiki/Conjugate_prior

Textbook: https://www.bayesianmodelsforastrophysicaldata.com/ 

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Beta_distribution
https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/Conjugate_prior
https://www.bayesianmodelsforastrophysicaldata.com/

