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Background



Motivation

Figure 1: Sample 0.9 quantile of log annual streamflow maxima at 489 locations.
Source: USGS Hydro Climatic Data Network (HCDN).

• Extremal streamflow is a key measure of flood risk
• Quantifying how the probability and magnitude of extreme
flooding events are changing is key to mitigating their impacts
under changing climate 2



Max-stable processes for spatial extremes

• Gaussian processes (GP) are inadequate for modeling extremes
• Max-stable processes (MSP) are a natural model for block
maxima, however:

• Intractable likelihood for even moderately large problems
• Restrictive in the class of dependence types they can incorporate

• Approximation - Composite Likelihood1

• Inefficient, finite sample bias, computational challenges for large n
• Approximation - Vecchia approximation

• Simplifies likelihoods for spatial processes including MSPs2

1Padoan et al. (2010)
2Huser et al. (2022)
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Objectives

• For large spatial extremes datasets, we want:
• Expressive and flexible spatial processes
• Computational strategies for intractable likelihoods

• Our approach - Process mixture model specified as a convex
combination of a GP and an MSP

• Vecchia approximation simplifies likelihood as a product of
univariate (intractable) PDFs

• Deep learning to approximate the intractable PDFs
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The Process Mixture Model



The process mixture model (PMM)

• Let Y(s) be the extreme observation at spatial location s with a
generalized extreme value (GEV) distribution:

Y(s) ∼ GEV{µ(s), σ(s), ξ(s)}

• Y(s) ∼ Fs, U(s) = Fs(Y(s)), and express the joint likelihood as

fy(y1, ..., yn;θ1,θ2) = fu(u1, ...,un;θ2)
n∏
i=1

∣∣∣∣dFs(yi;θ1)dyi

∣∣∣∣ , (1)

where yi ≡ y(si) and ui = Fs(yi;θ1)
• Take U(s) = G{V(s)} to get spatial dependence model on U(s)

V(s) = δ · gR{R(s)}+ (1− δ) · gW{W(s)} (2)
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Spatial dependence in the PMM

• Take U(s) = G{V(s)} to get spatial dependence model on U(s)

V(s) = δ · gR{R(s)}+ (1− δ) · gW{W(s)}

• R(s) is an MSP, W(s) is a GP; δ ∈ [0, 1]
• Conditional exceedance probability defined as:

χu(s1, s2) := Prob{U(s1) > u|U(s2) > u}

• χ(s1, s2) = limu→1 χu(s1, s2) > 0 iff δ > 0.5 =⇒ asymptotic
dependence

• gR{R(s)},gW{W(s)} iid∼ Exponential(1)
• Process mixture V(s) - hypoexponential distribution marginally
• Generalization of Huser and Wadsworth (2019).
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Deep Learning Vecchia approximation for the PMM

• Joint likelihood:
fy(y1, ..., yn;θ1,θ2) = fu(u1, ...,un;θ2)

∏n
i=1

∣∣∣∣dFs(yi;θ1)

dyi

∣∣∣∣
• Approximate the first term of the likelihood as3

fu(u1, ...,un;θ2) =
n∏
i=1

f(ui|θ2,u1, ...,ui−1) ≈
n∏
i=1

fi(ui|θ2,u(i)), (3)

for u(i) = {uj; j ∈ Ni} and neighboring set Ni ⊆ {1, ..., i− 1}
• u(i): Vecchia neighboring set.

3Vecchia (1988), Stein et al. (2004), Datta et al. (2016), Katzfuss and Guinness (2021)
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Deep Learning Vecchia approximation for the PMM

Figure 2: Vecchia neighboring sets when locations are ordered by distance
from origin

• The Vecchia neighboring set has up to 10 locations in this
example

• No analytical form for fi(ui|θ2,u(i))
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Deep Learning Vecchia approximation for the PMM

• Model fi(ui|θ2,u(i)) using semi parametric quantile regression
(SPQR)4 as:

f(ui|xi,Wi) =
K∑
k=1

πk(xi,Wi) · Bk(ui) (4)

• M-spline basis functions Bk(u) ≥ 0: satisfy
∫
Bk(u)du = 1 for all k

• Probability weights πk(xi,W): softmax outputs from a
feed-forward neural network (FFNN)

• Can approximate conditional densities smooth in its arguments5

4Xu and Reich (2021)
5Chui et al. (1980), Hornik et al. (1989)
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SPQR implementation

• Each f(ui|xi,Wi) is modeled using its own FFNN; xi := (θ2,u(i))
• FFNN weightsWi for location i estimated using synthetic data
generated using plausible parameter values

• Parameter estimation carried out afterwards using MCMC
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Numerical Results



Simulation Study - Process Mixture Model

Figure 3: Locations used in the EVP simulation studies: 50 locations, and
nearest neighbor assignments for locations 16 (left) and 45 (right).

• Common smoothness parameter αR = αW = α = 1
• Range ρ = ρW, ρR = 0.19ρ
• Range chosen such that distance at which GP correlation
reaches 0.05 = distance at which χu(s1, s2) for MSP is 0.05, where

χu(s1, s2) := Prob{U(s1) > u|U(s2) > u}
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SPQR model fit diagnostics - PMM

(a) Q-Q plots for checking
goodness of fit.

(b) Variable importance of δ,
ρ, and nearest neighbors.

Figure 4: Model diagnostics for process mixture model: Q-Q plot and VI plot.

SPQR settings: 50 epochs, batch size 100, learning rate 0.001, 2
hidden layers (30, 15 neurons), 15 output knots, 106 obs.
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SPQR model fit diagnostics

Figure 5: Sampling distribution of posterior means: Horizontal dashed lines
are true values with empirical coverage of the 95% intervals at the bottom.

• Scenario 5: MCAR with probability πM = 0.05 and censored below
the threshold T = q̂0.5 (over space and time)

13



Case Study: Extreme Streamflow



Case study: extreme streamflow data

Figure 6: Sample 0.9 quantile of log annual streamflow maxima Yt(s) at 489 locations.

• 489 locations across the US part of the USGS Hydro-Climatic
Data Network (HCDN)

• 50 years of complete data from 1972–2021 - annual streamflow
maxima
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Spatio-temporally varying coefficients model for the marginals

• Yt(s): log annual maxima for year t, location s
• GEV marginals with spatio-temporally varying coefficients (STVC):

Yt(s) ∼ GEV [µ0(s) + µ1(s)Xt, exp{σ(s)}, ξ(s)] , (5)

Xt = (yeart − 1996.5)/10 for yeart = 1972+ t− 1
• Xt captures changes in the location due to changing climate
• (µ0(s), µ1(s), σ(s), ξ(s)) ∼ GPs with common range parameter ρ∗

• FFNN architecture: 15 neighbors, 2 hidden layers (30, 20
neurons), 15 output knots, batch size 1000, learning rate 0.01, 50
epochs
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Posterior estimates

Posterior means and SD of spatial parameter estimates:

• δ̂ : 0.47 (0.02); ρ̂ : 1004 km (80); r̂ : 0.56 (0.07); ρ̂∗ : 17907 km (1806)
• Asymptotic independence regime with high probability

•
Figure 7: Posterior mean of µ1(s) at 489 gauges for log annual streamflow
maxima.

• Positive values of µ1 indicate increasing streamflow maxima 16



Posterior estimates

Figure 8: Estimates of Pr[µ1(s) > 0] for the GEV location parameters.

• Higher values indicate stronger evidence of increased
streamflow magnitude between 1972 and 2021

• Joint exceedances can be studied for clusters; e.g. in CO,
posterior probability that 0.9 quantile has gone up is 0.975
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Summary and Discussion

• Extreme value analysis of climate signals is of growing
importance, but existing methods are often intractable

• The process mixture model identifies patterns of increasing
streamflow due to changing climate within the US

• Flexible, tractable, parallelizable, can take advantage of GPU
acceleration

• Main idea can be applied to virtually any spatial process
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Appendix



Global SPQR
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Local SPQR

22



SPQR model fit diagnostics - GP

Figure 9: SPQR fit for simulated data: True and estimated PDFs for two
out-of-sample observations fitted using local and global SPQR.
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Spatial dependency in the data

(a) Conditional exceedance χu(h) for
log annual maximum streamflow
computed for different distances.

(b) Sample variogram for log annual
maximum streamflow, averaged over
50 years of data.

Figure 10: Spatial behaviour of log annual maximum streamflow.
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Model priors

• µ0(s) = µ̃0(s) + e(s)

• e(s) iid∼ Normal(0, vµ0 ), µ̃0(s) is a GP

• E{µ0(s)} = βµ0 , variance V{µ0(s)} = τ 2µ0

• Cor{µ0(s), µ0(s′)} = exp{−||s− s′||/ρ∗}

• µ1(s), the log scale σ(s), and the shape ξ(s) modeled similarly using GPs

• Common spatial range ρ∗

• βµ0 , βµ1 , βσ , βξ
iid∼ Normal(0, 1002)

• τµ0 , τµ1 , τσ , τ
2
ξ
iid∼ InvGamma(0.1, 0.1)

• vµ0 , vµ1 , vσ , v2ξ
iid∼ InvGamma(0.1, 0.1)

• log(ρ∗) ∼ Normal(9.74, 0.12)

• δ ∼ Uniform(0, 1) and ρ ∼ Uniform(0, 3126)
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