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Overview of Kriging



Motivating example

• LANDSAT and MODIS are satellites which provide optical
information of the planet

• What they actually ’measure’ is spectral and thermal data -
affected by cloud cover etc

• A common statistical problem is to make predictions at
unobserved locations
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https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/modis


The spatial model

• Let Yi be a measure of NDVI, a greenness metric used to monitor
changes in land use (e.g., urbanization, agriculture, fires)

• Yi is observed at locations si = (si1, si2), i = 1 : n.
• Xi are p covariates at location i - e.g., elevation data.
• A standard spatial model representation is Yi = µi + Zi + ϵi

• µi = Xβ; similar to linear regression
• There are 2 error terms:

• ϵi
iid∼ N(0, τ 2); called the nugget

• Zi is mean 0, spatially correlated

• Zi captures spatial correlation not explained by X
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Spatial covariance

• E(Yi) = µi

• Zi is independent of ϵj for all (i, j) pairs, and so:
• Σii(θ) := V(Yi) = σ2 + τ 2

• Σij(θ) = Cov(Yi, Yj) = σ2ρ(dij, ϕ)

• dij is the distance between si and sj, ϕ is the spatial range
• Common forms for ρ(·) include exponential and squared
exponential, and Matern.

• We’ll denote the coviance matrix as Σ(θ); dimensions = n× n
• Stationarity and isotropy are common assumptions - strong, but
often necessary
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https://en.wikipedia.org/wiki/Covariance_function
https://en.wikipedia.org/wiki/Covariance_function
https://bit.ly/3M0T3gG


Kriging

• Given all this we want to predict Ŷ0 at s0
• Ideally, some uncertainty quantification (standard deviation,
prediction interval etc)

• Kriging just assumes a constant mean, and known covariance
• Gaussian data is not necessary, but it makes things easier
• The ‘optimal’ prediction is given by

Ŷ0 = µ0(β̂) + Σ0(θ̂)Σ(θ̂)
−1{Y− µ(β̂)}

• Inverting Σ(θ̂) takes O(n3) computational cost and O(n2) storage
• Panama has ∼ 1.7× 107 observed pixels

This is a major bottleneck.
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Dealing with Large Datasets



The Gaussian process

• This is pretty ubiquitous in Bayesian literature
• Data is observed at fixed spatial locations s1, . . . , sn. The joint
distribution of the data is multivariate Normal

• The underlying process happens everywhere
• The multivariate Normal is then just a finite-valued subset of an
infinite dimensional Gaussian process (GP) [1,2]

• Observations at any location is univariate Normal; observations
at any subset of locations is multivariate Normal

• The GP is parameterized by a mean function m(·) and a
covariance function C(·, ·)

m(Y(si)) = E(Y(si))
C(Y(si), Y(sj)) = Cov(Y(si), Y(si))
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https://gaussianprocess.org/gpml/
https://bit.ly/40Si1mR


Some common approaches

• Brian’s class notes
• The Vecchia approximation1 has taken off again in recent years
with the proliferation of large datasets in environment, ecology,
epidemiology etc.

1Wiki article
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https://st533.wordpress.ncsu.edu/files/2020/08/BigData.pdf
https://en.wikipedia.org/wiki/Vecchia_approximation


The Vecchia approximation

• Let y1, . . . , yn be an ordered set of random variables
• For any ordering, you can express their joint distribution as

f(y1, . . . , yn; θ) = f(y1; θ)
n∏
i=2

f(yi|yi−1, . . . y1; θ)

• For every yi, i > 1, consider the set Ni ⊂ {1, . . . , i− 1}
• The Vecchia approximation is

f(y1, . . . , yn; θ) ≈ f(y1)
n∏
i=2

f(yi|y(i); θ),

where y(i) = {yj; j ∈ Ni}
• Ni is often called the Vecchia neighbor set; |Ni| ≤ m

How to order? How to choose m?
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Simplifying the precision matrix

• Ω(θ) = Σ(θ)−1 is defined as the precision matrix. Sparsity of the
precision matrix simplifies computations

• Consider the following Vecchia approximation

f(y1, . . . , y5) = f(y1)f(y2|y1) . . . f(y4|y3, y2, y1)
≈ f(y1)f(y2|y1) . . . f(y5|y4)

• This elicits a sparse precision matrix proportional to
1 k12 0 0 0

1 k23 0 0
1 k34 0

1 k54
1


• The (structural) sparsity makes Cholesky decompositions easier
• Working with a Vecchia approximated process has O(nm3)

computational cost and needs O(nm2) storage
• In practice, m << n 9



Use in spatial modeling

• The approximation is usually applied to {Zi} and not {Yi}
• In its simplest form, the ordering is done based on some
coordinate system

• m is often the set of nearest neighbors
• The general consensus is that for processes modeling mean
behavior, the approximation is more sensitive to |N | than the
ordering of locations
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An example

Image from Datta et al (2016)
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https://www.tandfonline.com/doi/abs/10.1080/01621459.2015.1044091


Using machine learning

• There are connections between neural networks and GPs, which
has led to some interesting methodology and applications

• Harris et al (2022) do neural network GP regression (NN-GPR) for
climate modeling; the covariance function is based on an
infinitely wide neural network

• Sauer et al (2022) propose deep Gaussian processes (DGP) where
the covariance functions are themselves modeled using nested
GPs (like NN layers)

• Chen et al (2020) directly get predictions using a neural network;
alongside lat-long, they add basis functions which have spatial
information, essentially doing kriging using a NN
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https://arxiv.org/abs/2202.04152
https://arxiv.org/abs/2204.02904
https://arxiv.org/abs/2007.11972


Spatial Extremes



Spatial extremes

• Consider extreme events in streamflow, wildfires, storms.
• For example, a spatial field of annual maximum rainfall
• Data is scarce, and spatial dependence is often not in the mean
• Let f(y1, y2) be the joint density of such a spatial process at
locations s1 and s2

• Let u1 and u2 be the marginal CDFs, i.e., ui := Fi(yi)
• Fi are usually extreme value distribution functions
• What is of interest, then, are questions like:

As the process becomes extreme at s1, will it also be extreme at s2?
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https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution


Asymptotic (in)dependence

• A measure of extremal (tail) dependence commonly used is

χu(s1, s2) = P(u1 > u|u2 > u)

for high quantile levels u
• For GPs, χu → 0 as u→ 1. This is called asymptotic
independence

• For extreme value processes like max-stable processes, χu → c
for c > 0 as u→ 1. This is called asymptotic dependence
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The need for spatial extremes models

• Individual data points are either maxima (max-stable processes)
or peaks over a threshold (generalized Pareto process)

• These are scarce by definition; If we have 100 years of temp data,
that is 100 data points of annual maximum temp

• They are more scarce at its extremes! there is exactly 1 data
point above the 99th percentile of annual maxima data

• What is the probability that it will be hotter this year compared
to 2022? That is, what is P[Tmax2023 > Tmax2022]?

• We want inference for these extreme quantiles
• Computationally very challenging; e.g., the full likelihood for the
MSP can be written down only for around 13 locations
(Castruccio et al, 2016)
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Castruccio, S., Huser, R. and Genton, M. G. (2016) High-order composite likelihood inference for max-stable distributions and processes


Recent work

• Huser and Wadsworth (2022) is a great read for recent advances
• A lot of literature focuses on computational challenges
• Huser et al (2022) studied Vecchia approximation for spatial
extremes

• There has been recent work on using neural networks with a few
different approaches - see e.g. Sainsbury-Dale et al (2022),
Richards and Huser (2022), Majumder et al (2022)

• In terms of applications, Zhang et al (2022) looked at extreme
precipitation in the central US, Majumder and Reich (2022)
looked at extreme streamflow for the same region

• Richards and Huser (2022) studied extreme wildfire risk across
the US; Bercos-Hickey et al (2022) looked at the Pacific North
West heat wave of 2021

This is an active research area in methodology and in applications
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https://wires.onlinelibrary.wiley.com/doi/full/10.1002/wics.1537
https://arxiv.org/abs/2203.05626
https://arxiv.org/abs/2208.12942
https://arxiv.org/abs/2208.07581
https://arxiv.org/abs/2208.03344
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4048960
https://arxiv.org/abs/2212.07267
https://arxiv.org/abs/2208.07581
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022GL099396


Questions?

• If you’re interested in my research, I try to keep my website
updated

• Feel free to reach out through email or LinkedIn

17

https://reetamm.com
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