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Overview of Kriging



Motivating example

- LANDSAT and MODIS are satellites which provide optical
information of the planet

- What they actually 'measure’ is spectral and thermal data -
affected by cloud cover etc

- A common statistical problem is to make predictions at
unobserved locations


https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/modis

The spatial model

- Let ¥; be a measure of NDVI, a greenness metric used to monitor
changes in land use (e.g,, urbanization, agriculture, fires)
- Y; is observed at locations s; = (Si1,Sj), i = 1: n.
- X; are p covariates at location i - e.g,, elevation data.
- A standard spatial model representation is Y; = u; + Z; + €;
- pi = XB; similar to linear regression
- There are 2 error terms:
- & Z N0, 7%); called the nugget
- Zjis mean 0, spatially correlated

- Z; captures spatial correlation not explained by X



Spatial covariance

CE(Y) = pi
- Z;yis independent of ¢ for all (/, /) pairs, and so:
CEi(0) =) =o'+ 17
© Zji(0) = Cov(V;,Y)) = o’ p(dyj, $)
- djj is the distance between s; and s;, ¢ is the spatial range

- Common forms for p(-) include exponential and squared
exponential, and Matern.

- We'll denote the coviance matrix as X(6); dimensions =n x n

- Stationarity and isotropy are common assumptions - strong, but
often necessary


https://en.wikipedia.org/wiki/Covariance_function
https://en.wikipedia.org/wiki/Covariance_function
https://bit.ly/3M0T3gG

- Given all this we want to predict ¥, at so

- Ideally, some uncertainty quantification (standard deviation,
prediction interval etc)

- Kriging just assumes a constant mean, and known covariance
- Gaussian data is not necessary, but it makes things easier
- The ‘optimal’ prediction is given by

Yo = no(B) + Zo(9)=(9) {Y — u(B)}

- Inverting ¥(0) takes O(n®) computational cost and O(n?) storage

- Panama has ~ 1.7 x 107 observed pixels

This is a major bottleneck.



Dealing with Large Datasets




Some common approaches

- Brian’s class notes
- The Vecchia approximation' has taken off again in recent years
with the proliferation of large datasets in environment, ecology,

epidemiology etc.

Twiki article


https://st533.wordpress.ncsu.edu/files/2020/08/BigData.pdf
https://en.wikipedia.org/wiki/Vecchia_approximation

Example: time series data

Say Xi,...,Xt,...X, follow a time series such that:

Xt = ®Xi1 + ¢,

et N0, 0?).

Note that for the joint likelihood,

f(X%"wXﬂ) 7& Hf(xl)

However, the following relationship holds:

(X, .oy Xn) = f(xq) - flx1) - f(Xs X, Xa) - f(Xn X1y - oy X1)

n

H f(Xe|xe—1)

t=1

Q

However, there is no natural ordering in spatial data.



The Vecchia approximation

- LetYy,...,Y, be an ordered set of random variables
- For any ordering, you can express their joint distribution as

f0, - yni 0) = flys: 0) [ [F0ilyizas - - v2:6)
=2

- For every y;,i > 1, consider the set N C {1,...,i —1}

- The Vecchia approximation is
n
f0s - yn: 0) = fom) T fvilyay: 0),
i=2

where y) = {yj:j € Ni}
- N is often called the Vecchia neighbor set; |Vj| < m

How to order? How to choose m?



Simplifying the precision matrix for spatial data

- Q(0) = £(9)7"is defined as the precision matrix. Sparsity of the
precision matrix simplifies computations
- Consider the following Vecchia approximation

i, - ¥s) = fy)fvalyr) - - f(valys, Yo, v1)
~ fyDftyalya) - - - fyslys)
- This elicits a sparse precision matrix proportional to

T kR, 0 0 O
1T ks 0 O

- The (structural) sparsity makes Cholesky decompositions easier

- Working with a Vecchia approximated process has O(nm?)
computational cost and needs O(nm?) storage

- In practice, m << n 10



Use in spatial modeling

- The approximation is usually applied to {Z;} and not {Y;}
- In its simplest form, the ordering is done based on some
coordinate system
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- m is often the set of nearest neighbors

- The general consensus is that for processes modeling mean
behavior, the approximation is more sensitive to [N than the
ordering of locations
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Potential orderings
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Image from Guinness (2018)
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https://www.tandfonline.com/doi/full/10.1080/00401706.2018.1437476

An example
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Image from Datta et al (2016)
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https://www.tandfonline.com/doi/abs/10.1080/01621459.2015.1044091

How do you use this?

- GPvecchia is another similar package, but which has a Bayesian
implementation. [vignette link]

- NNGP (and the corresponding spNNGP package) is another
common approach

- I've found GpGp to be more robust and faster
- Downside - not fully Bayesian
- Upside - supports a large number of covariance kernels

- More importantly, even if you don't use GpGp to fit/predict, you
can always use its ordering function to create your own Vecchia
approximation.
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http://cran.r-project.org/web/packages/GPvecchia/vignettes/GPvecchia_vignette.html
https://cran.r-project.org/web/packages/spNNGP/index.html
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