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Overview of Kriging



Motivating example

• LANDSAT and MODIS are satellites which provide optical
information of the planet

• What they actually ’measure’ is spectral and thermal data -
affected by cloud cover etc

• A common statistical problem is to make predictions at
unobserved locations
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https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/modis


The spatial model

• Let Yi be a measure of NDVI, a greenness metric used to monitor
changes in land use (e.g., urbanization, agriculture, fires)

• Yi is observed at locations si = (si1, si2), i = 1 : n.
• Xi are p covariates at location i - e.g., elevation data.
• A standard spatial model representation is Yi = µi + Zi + ϵi

• µi = Xβ; similar to linear regression
• There are 2 error terms:

• ϵi
iid∼ N(0, τ 2); called the nugget

• Zi is mean 0, spatially correlated

• Zi captures spatial correlation not explained by X
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Spatial covariance

• E(Yi) = µi

• Zi is independent of ϵj for all (i, j) pairs, and so:
• Σii(θ) := V(Yi) = σ2 + τ 2

• Σij(θ) = Cov(Yi, Yj) = σ2ρ(dij, ϕ)

• dij is the distance between si and sj, ϕ is the spatial range
• Common forms for ρ(·) include exponential and squared
exponential, and Matern.

• We’ll denote the coviance matrix as Σ(θ); dimensions = n× n
• Stationarity and isotropy are common assumptions - strong, but
often necessary
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https://en.wikipedia.org/wiki/Covariance_function
https://en.wikipedia.org/wiki/Covariance_function
https://bit.ly/3M0T3gG


Kriging

• Given all this we want to predict Ŷ0 at s0
• Ideally, some uncertainty quantification (standard deviation,
prediction interval etc)

• Kriging just assumes a constant mean, and known covariance
• Gaussian data is not necessary, but it makes things easier
• The ‘optimal’ prediction is given by

Ŷ0 = µ0(β̂) + Σ0(θ̂)Σ(θ̂)
−1{Y− µ(β̂)}

• Inverting Σ(θ̂) takes O(n3) computational cost and O(n2) storage
• Panama has ∼ 1.7× 107 observed pixels

This is a major bottleneck.
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Dealing with Large Datasets



Some common approaches

• Brian’s class notes
• The Vecchia approximation1 has taken off again in recent years
with the proliferation of large datasets in environment, ecology,
epidemiology etc.

1Wiki article
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https://st533.wordpress.ncsu.edu/files/2020/08/BigData.pdf
https://en.wikipedia.org/wiki/Vecchia_approximation


Example: time series data

Say X1, . . . , Xt, . . . Xn follow a time series such that:

Xt = ΦXt−1 + ϵt,

ϵt
iid∼ N(0, σ2).

Note that for the joint likelihood,

f(x1, . . . , xn) ̸=
n∏
t=1

f(xt)

However, the following relationship holds:

f(x1, . . . , xn) = f(x1) · f(x2|x1) · f(x3|x2, x1) . . . f(xn|xn−1, . . . , x1)

≈
n∏
t=1

f(xt|xt−1)

However, there is no natural ordering in spatial data.
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The Vecchia approximation

• Let Y1, . . . , Yn be an ordered set of random variables
• For any ordering, you can express their joint distribution as

f(y1, . . . , yn; θ) = f(y1; θ)
n∏
i=2

f(yi|yi−1, . . . y1; θ)

• For every yi, i > 1, consider the set Ni ⊂ {1, . . . , i− 1}
• The Vecchia approximation is

f(y1, . . . , yn; θ) ≈ f(y1)
n∏
i=2

f(yi|y(i); θ),

where y(i) = {yj; j ∈ Ni}
• Ni is often called the Vecchia neighbor set; |Ni| ≤ m

How to order? How to choose m?
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Simplifying the precision matrix for spatial data

• Ω(θ) = Σ(θ)−1 is defined as the precision matrix. Sparsity of the
precision matrix simplifies computations

• Consider the following Vecchia approximation

f(y1, . . . , y5) = f(y1)f(y2|y1) . . . f(y4|y3, y2, y1)
≈ f(y1)f(y2|y1) . . . f(y5|y4)

• This elicits a sparse precision matrix proportional to
1 k12 0 0 0

1 k23 0 0
1 k34 0

1 k54
1


• The (structural) sparsity makes Cholesky decompositions easier
• Working with a Vecchia approximated process has O(nm3)

computational cost and needs O(nm2) storage
• In practice, m << n 10



Use in spatial modeling

• The approximation is usually applied to {Zi} and not {Yi}
• In its simplest form, the ordering is done based on some
coordinate system

• m is often the set of nearest neighbors
• The general consensus is that for processes modeling mean
behavior, the approximation is more sensitive to |N | than the
ordering of locations
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Potential orderings

Image from Guinness (2018)
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https://www.tandfonline.com/doi/full/10.1080/00401706.2018.1437476


An example

Image from Datta et al (2016)
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https://www.tandfonline.com/doi/abs/10.1080/01621459.2015.1044091


How do you use this?

• GPvecchia is another similar package, but which has a Bayesian
implementation. [vignette link]

• NNGP (and the corresponding spNNGP package) is another
common approach

• I’ve found GpGp to be more robust and faster
• Downside - not fully Bayesian
• Upside - supports a large number of covariance kernels
• More importantly, even if you don’t use GpGp to fit/predict, you
can always use its ordering function to create your own Vecchia
approximation.
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http://cran.r-project.org/web/packages/GPvecchia/vignettes/GPvecchia_vignette.html
https://cran.r-project.org/web/packages/spNNGP/index.html
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