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Abstract. Prescribed burning is a critical tool for managing wildfire risks and meeting ecological objectives, but its safe
and effective application requires that specific meteorological criteria (a ‘bum window’) are met. Here, we evaluate the
potential impacts of projected climatic change on prescribed burning in the south-eastern United States by applying a set of
burn window criteria that capture temperature, relative humidity and wind speed to projections from an ensemble of Global
Climate Models under two greenhouse gas emission scenarios. Regionally, the percentage of suitable days for burning
changes little during winter but decreases substantially in summer owing to rising temperatures by the end of the 21st
century compared with historical conditions. Management implications of such changes for six representative land
management units include seasonal shifts in burning opportunities from summer to cool-season months, but with
considerable regional variation. We contend that the practical constraints of rising temperatures on prescribed fire activities
represent a significant future challenge and show that even meeting basic bum criteria (as defined today) will become
increasingly difficult over time, which speaks to the need for adaptive management strategies to prepare for such changes.
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PC2FM is used to project shifts in 21st
century fire regimes due to climate
change.

Fire probability is predicted to increase
across the conterminous US.

Increasing temperatures primarily
account for projected rising fire proba-
bilities.

Pyrome analogs illustrate uncertainty in
projections of future fire probability.

« PC2FM provides a useful compromise
between empirical and processed-
based fire models.

.

.
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ABSTRACT

Globally increasing wildfires have been attributed to anthropogenic climate change. However, providing decision
makers with a clear understanding of how future planetary warming could affect fire regimes is complicated by
confounding land use factors that influence wildfire and by uncertainty associated with model simulations of cli-
mate change. We use an ensemble of statistically downscaled Global Climate Models in combination with the
Physical Chemistry Fire Frequency Model (PC2FM) to project changing potential fire probabilities in the conter-
minous United States for two scenarios representing lower (RCP 4.5) and higher (RCP 8.5) greenhouse gas emis-
sion futures. PC2FM is a physically-based and scale-independent model that predicts mean fire return intervals
from both fire reactant and reaction variables, which are largely dependent on a locale’s climate. Our results over-
whelmingly depict increasing potential fire probabilities across the conterminous US for both climate scenarios.
The primary mechanism for the projected increases is rising temperatures, reflecting changes in the chemical re-
action environment commensurate with enhanced photosynthetic rates and available thermal molecular energy.
Existing high risk areas, such as the Cascade Range and the Coastal California Mountains, are projected to expe-
rience greater annual fire occurrence probabilities, with relative increases of 122% and 67%, respectively, under
RCP 8.5 compared to increases of 63% and 38% under RCP 4.5. Regions not currently associated with frequently



Prescribed Fire is a Critical Management Tool in the
Southeast
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More acres intentionally burned per year in SE than in any
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Habitat Management



700 25,000
500 Ft. Benning, GA Prescribed Fire (Hectares burned)
: —— Number of Wildfires 20,000
o 500
5
§ 400_ _15,000
'S
g 390 10,000
>
Z 200-
-5,000
100
0 L L L ([ rrr—rrrrpr e J_ﬂo
AN < O 00 - AN <t © o0 o N <t (@] (e @) o AN
QO QO O (00) (o)) (@) (®)) (o)) (®)] o o o o o - -
2 222222228 Q& & & &
Fiscal Year

Wildfire Risk Reduction

Figure 19.19 Carter et al. (2018)

Prescribed Fires (HA)



GEORG 1 FORESTRY
COMMISSION

Permitting and Acres Burned

Burning Permits Issued and Acres Burned in Georgia

1,800,000 -
. 1,634,598 [ 578,425
o ” YFLED :
1,600,000 : L 446,705 Rx Fire Data: Chuck Williams —
_ 1,424,481 [ Georgia Forestry Commission
1,400,000
1,200,000 — 1,159,581
1,000,000 :
£00.000 798,989 798,442 760,318 783,594 777.896 .
600,000 - :
400,000 -
200,000 :
l] . .
2013 2014 2015 2016 2017

o Permits Issued ®m Acres Burned

Fire Management is sensitive to climate
variability and change



How could projected changes in climate affect rescied
burning opportunities in the Southeast?




Literature-based meteorological criteria for burning

* Temperature 0-32.5°C (32-90.5°F)

* Relative Humidity > 30%

* Average Daily Wind Speed 2.25-8.0 m/s (~5-18 mph)
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The RxFire recommendation engine

A statistical tool with two components:
1. Fail-state estimation model
2. Optimal allocation algorithm for burn parcels



The RxFire recommendation engine

* Goal: Given weather conditions and information on burn plots, give
expected utility/parcel benefit of burning each parcel

* |dentifies ‘best’ parcels to burn in a 3-day window

* Help the decision-making process by providing options with the
highest likelihood of success



Literature- based meteorologlcal crlterla for burning

* Temperature 0-32.5°C (32-90.5°F)
* Relative Humidity > 30%
* Average Daily Wind Speed 2.25-8.0 m/s (~5-18 mph)

* We define a fail-state as the ‘probability that burn criteria are not met’.




Fail-State Estimation

* Input: 3-day weather forecasts from the National Weather Service
(National Digital Forecast Database or NDFD)

* Output: calibrated forecasts with uncertainty estimates

* Model: Bayesian hierarchical model (BHM) that jointly estimates
Tmax, Tmin, Relative humidity, windspeed, and precipitation.

e Benefits of the BHM:

* Uncertainty estimates: "The 2-day forecast of Tmax is 80, and according to the
model, the observed Tmax has a 95% probability of being within 78-82.5

* Joint model: The weather variables are correlated, and the BHM takes that
into consideration



Fail state estimation

* Alongside estimates like:

‘The 2-day forecast of Tmax is 80, and according to the model, the observed Tmax
has a 95% probability of being within 78 - 82.5’

* We can also compute estimates like:

‘The 2-day forecast of Tmax is 80, and according to the model, the observed Tmax
has a 99.3% probability of being < 90.5’ (i.e. within threshold),

* and ‘there is a 92.5% probability that all variables will be within threshold’

* This way, we can essentially assign a burn viability score to every burn parcel
based on 1-day, 2-day, and 3-day forecasts



Utility functions

What other things matter when scoring burn parcels?
* Area of the parcel

* Years since last burn
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Utility function for years since burn

e Use a utility function to 1.00]
capture/quantify primary objectives

* Chose to use ‘Years Since Burn’ since it
aggregates objectives related to
habitat condition/quality, wildfire risk,
and (potentially)
efficacy/efficiency/cost

* Can also build spatial utility functions
of interest including area, distance to
the wildland urban interface, distance

Utility

to nearby tracts etc. 0 : :

Years since burn



Optimal allocation algorithm

When was the parcel actually burned?

What is the recommended day to burn?

* Inputs e

b 2i
* List of burn tracts with locations and area ¢ o %
* Weather forecasts for the region P J :'_
* Assess probability of fail-states £ 'g',.? forecast
: . : = S <
* Determine utility functions for burn . . SR RN
. . o F 0
decisions = q . * 3Day
£ 4
* Outputs = 2.8, .
* Probability of staying within prescription + ?
expected utility of Rx burns at locations R |
* Ranked list of locations with highest expected 13N 2021 Apr 2021 Jul 2021 Oct2021 Jan 2022

utility Date



Allocation algorithm example

* 3 |ocations, 3 days * Now across all 3 plots, we have:

. Say for plot 1:

R T
prob burn Plot 1 0.546 0.519 0.589

l-day 091 0.60 0546 piot2 0.613 0.600 0.615

2-day 0.85 1 0.61 0.519 Plot 3 0.309 0.442 0.600

3-day 0.95 1 0.62 0.589

* 0.91x1x0.60=0.546 * Which plot to burn on which day?

 Which combination of 3 values (one of
each row) has the biggest sum?



Allocation algorithm example

Option A: Choose the largest value on day  The Hungarian algorithm maximizes

1, then largest on day 2, and so on.... global utility
| |1day  [2day  |3day [N |lday |2day |3-day
Plot 1 0.546 0.519 0.589 Plot 1 0.546 0.519 0.589
Plot 2 0.613 0.600 0.615 Plot 2 0.613 0.600 0.615
Plot 3 0.309 0.442 0.600 Plot 3 0.309 0.442 0.600
Usually not the best option. In this case: In this case, the solution is:

0.613 +0.519 + 0.600 =1.732 0.546 + 0.600 + 0.600 = 1.746



Allocation algorithm example

What if the burn manager decides that
they will only consider plots which have

Utility Thresh Years since
prob burn

1-d 0.91 0.60 0.546 .
Y a threshold probability of 90% or more?
2-d 0.85 1 0.61 0.519 : .
il (i.e. < 10% chance of a fail state)
3-day 0.95 1 0.62 0.589

 Doesn’t affect allocations, but it could
* For long periods, nothing will qualify for

T Ny sy oy NN

Plot 1 0.546 0.519 0.583 * The allocations happen over rolling 3-
Plot 2 0.613 0.600 0.615 day windows

Plot 3 0.309 0-442 0.600 e Other, more nuanced decision making
criteria considered in the tool



Eglin AFB Case study
* Detailed fire data available since the 1970s,
including
e Start and end dates

» Shapefiles

ﬁ‘:‘-rid MET
Q

* Time since last burn

e 3-day weather forecast data from NDFD

* Observational weather data from GridMET
(basis for downscaled climate model data for
future phase of project)

 Model fitted for 2015-2020, validation and burn
allocations for 2021.
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Probability of being within prescription

1-day Tmax forecast 2-day Tmax forecast 3-day Tmax forecast
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Figure 3: Forecast verification for 1, 2, and 3-day T, . predictions using CRPS, for data pooled across 88 locations.

* Bayesian hierarchical model for joint forecast veritication of prescription
parameters

* Built-in uncertainty quantification



Actual allocations

Actual burn date

YEARS SINCE LAST BURN

Jan 2021 Apr 2021 Jul Oct 2021

ACTUAL BURN DATE

Total of 56 plots that were burned at Eglin AFB in 2021

Example from 2021 burn season



threshprob = 0.90, maxplots/day = 1

190% chance within prescription

L B I L

YEARS SINCE LAST BURN

Jan 2021 Oct2021

RECOMMENDED BURN DATE

Higher threshold probability equates to more risk averse behavior

threshprob = 0.80, maxplots/day = 1

80% chance within prescription

@ .- e

Oct 2021

RECOMMENDED BURN DATE

Example from 2021 burn season



threshprob = 0.90, maxplots/day = 1

190% chance within prescription

YEARS SINCE LAST BURN

Jan 2021 Oct2021

RECOMMENDED BURN DATE

threshprob = 0.80, maxplots/day = 1

80% chance within prescription

Oct 2021

RECOMMENDED BURN DATE

Actual allocations

Actual burn date

Jan 2021 Apr 2021 Jul Oct 2021

ACTUAL BURN DATE

Can include constraints like maximum # plots burnt/day OR maximum area burnt/day.

Example from 2021 burn season



'Recommendation Engine’
Prescribed Fire Date

May Jul Sep Nov

Mar

Jan

o

e

8]

Model has more late-year
burns but overall seems close
to matching decision process
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Burn allocation example 1
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Burn allocation example 2
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Burn allocation example 3
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What next?



Relax the fail-state constraints

Winter Transition Summer

Historical (1976-2005)
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Expand the set of utility functions

* Workshop conducted in 12/23 with fire practitioners from the Coastal Plains and
Piedmont regions of North Carolina to elicit:
« Additional constraints like cost/manpower in different management scenarios
* Custom utility functions which depend on vegetation type/stakeholders



Quantify opportunity loss

e Use climate predictions (medium-term ) or climatology (long-term) to estimate
trends for available burn days

* Use the information in the tool to provide more context:

‘Both parcels A and B have same utility this year, but parcel A’s utility declines steadily
from next year (if we don’t burn this year), while parcel B’s utility starts declining only
after 2 years (if we don’t burn this year).



Operationalizing the tool

* The methodology is off-the-shelf, so a similar model can be developed for other
regions

* Bayesian models can be updated to incorporate new information

* Archival weather forecast data and observed weather data is usually easily available
for CONUS (needed to train the fail-state estimator)

e Supply your own utility function (or modify ours)
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