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Background



Figure 1: Sample 0.9 quantile of log annual streamflow maxima at 489 locations.
Source: USGS Hydro Climatic Data Network (HCDN).

- Extremal streamflow is a key measure of flood risk
- Quantifying how the probability and magnitude of extreme
flooding events are changing is key to mitigating their impacts

under changing climate



Max-stable processes for spatial extremes

- Gaussian processes (GP) are inadequate for modeling extremes

- Max-stable processes (MSP) are a natural model for block
maxima, 0000000:

- Intractable likelihood for even moderately large problems
- Restrictive in the class of dependence types they can incorporate

- Approximation - Composite Likelihood'

- Inefficient, finite sample bias, computational challenges for large O
- Approximation - Vecchia approximation

- Simplifies likelihoods for spatial processes including MSPs?
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- For large spatial extremes datasets, we want:

- Expressive and flexible spatial processes
- Computational strategies for intractable likelihoods

- Our approach - Process mixture model specified as a convex
combination of a GP and an MSP

- Vecchia approximation simplifies likelihood as a product of
univariate (intractable) PDFs

- Deep learning to approximate the intractable PDFs



The Process Mixture Model



The process mixture model (PMM)

- Let 0(s) be the extreme observation at spatial location s with a
generalized extreme value (GEV) distribution:

0(s) GEVE (s); (s); (s)g
- 0(s) s, O(s) = Os(0(s)), and express the joint likelihood as

Y 000
Do(@rs 500y 45 2) = 0o(0y 5005 2) %; (1)

where ;  0(s;) and 0, = Us(@;; 1)
- Take O(s) = OfJ(s)g to get spatial dependence model on O(s)

0s)= Oofd(s)g+ (1 ) Oofl(s)g )



Spatial dependence in the PMM

- Take O(s) = OfTI(s)g to get spatial dependence model on O(s)
Os)= Dofd(s)g+ (1 ) Oofl(s)g

- 0(s) isan MSP, J(s) isa GP; 2 [0;1]
- Conditional exceedance probability defined as:
0(s1; s2) := Probfl(s,) > 0j0(s;) > Og
(s1;8) =limguq p(se;s2) =>0iff > 0:5 =) asymptotic
dependence

- Opfd(s)g; OpFO(s)g - Exponential(1)

- Process mixture 0(s) - hypoexponential distribution marginally
- Generalization of 00000 000 OOO00OOO0O 000000,



Deep Learning Vecchia approximation for the PMM

- Joint likelihood:
Do(@; =500y 15 2) = 004525005 2)

QD g (G 1)
=1 00,

- Approximate the first term of the likelihood as?
Y h'd _
0@ 0o 2) = 00 2040 1) L@@ 200) G)
=1 =1
for g = f0;;02 Nyg and neighboring set N, f1;:::;0 g
- Og: Vecchia neighboring set.

3Vecchia (1988), Stein 00 01 (2004), Datta 00 01 (2016), Katzfuss and Guinness (2021)
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Figure 2: Vecchia neighboring sets when locations are ordered by distance
from origin

- The Vecchia neighboring set has up to 10 locations in this
example
- No analytical form for [(0yj 2;0¢y)



Deep Learning Vecchia approximation for the PMM

- Model I,(0;j »;0¢y) using semi parametric quantile regression
(SPQR)* as:

) >
I(0rgx; Wr) = 0(x; Wo)  Op(0) (4)
0=1
R
- M-spline basis functions Op(0)  0: satisfy Op(0)00 =1 forall k

- Probability weights 7(x;; W): softmax outputs from a
feed-forward neural network (FFNN)

- Can approximate conditional densities smooth in its arguments®

“Xu and Reich (2021)
5Chui 00 00 (1980), Hornik 01 07 (1989)



SPQR implementation

- Each I(0ijx;; Wy) is modeled using its own FENN; x; := (' 2;0¢))
- FFNN weights W, for location [ estimated using synthetic data
generated using plausible parameter values

- Parameter estimation carried out afterwards using MCMC



Numerical Results




Simulation Study - Process Mixture Model
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Figure 3: Locations used in the EVP simulation studies: 50 locations, and
nearest neighbor assignments for locations 16 (left) and 45 (right).

- Common smoothness parameter g = pg= =1
- Range = g, g=0:19
- Range chosen such that distance at which GP correlation
reaches 0.05 = distance at which (s;s;) for MSP is 0.05, where
0(s1;52) := Probfl(s,) > Ljl(sz) > Og
1



SPQR model fit diagnostics - PMM

Q-Q plot - site 45

Variable importance at site 45
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(a) Q-Q plots for checking (b) variable importance of ,
goodness of fit. , and nearest neighbors.

Figure 4: Model diagnostics for process mixture model: Q-Q plot and VI plot.

SPQR settings: 50 epochs, batch size 100, learning rate 0.001, 2
hidden layers (30, 15 neurons), 15 output knots, 10° obs.



SPQR model fit diagnostics
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Figure 5: Sampling distribution of posterior means: Horizontal dashed lines
are true values with empirical coverage of the 95% intervals at the bottom.

- Scenario 5: MCAR with probability 5 = 0:05 and censored below
the threshold 0 = 0.5 (over space and time)
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Case Study: Extreme Streamflow




Case study: extreme streamflow data

Figure 6: Sample 0.9 quantile of log annual streamflow maxima 0;(0) at 489 locations.

- 489 locations across the US part of the USGS Hydro-Climatic
Data Network (HCDN)

- 50 years of complete data from 1972-2021 - annual streamflow
maxima
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Spatio-temporally varying coefficients model for the marginals

- Ou(s): log annual maxima for year [, location s
- GEV marginals with spatio-temporally varying coefficients (STVC):

Ou(s)  GEV[ o(s) + 1(s)0s;expf (s)g; (S)]; (5)

0; = (year, 1996:5)=10 for year, = 1972 +0 1
- [; captures changes in the location due to changing climate
- (o(s); 1(s); (s); (s)) GPswith common range parameter

- FFNN architecture: 15 neighbors, 2 hidden layers (30, 20
neurons), 15 output knots, batch size 1000, learning rate 0.01, 50
epochs
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Posterior estimates

Posterior means and SD of spatial parameter estimates:

- ™1 0:47 (0:02); ~: 1004 00 (80); 0 : 0:56 (0:07); A : 17907 001 (1806)
- Asymptotic independence regime with high probability

Figure 7: Posterior mean of 4(s) at 489 gauges for log annual streamflow
maxima.

- Positive values of  indicate increasing streamflow maxima 1



Posterior estimates

P(u,>0)

0.75
0.50

0.25

Figure 8: Estimates of O0[ 1(s) > 0] for the GEV location parameters.

- Higher values indicate stronger evidence of increased
streamflow magnitude between 1972 and 2021

- Joint exceedances can be studied for clusters; e.g. in CO,
posterior probability that 0.9 quantile has gone up is 0.975



Summary and Discussion

- Extreme value analysis of climate signals is of growing
importance, but existing methods are often intractable

- The process mixture model identifies patterns of increasing
streamflow due to changing climate within the US

- Flexible, tractable, parallelizable, can take advantage of GPU
acceleration

- Main idea can be applied to virtually any spatial process





https://cran.r-project.org/package=SPQR
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