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Background



Motivation

Figure 1: Sample 0.9 quantile of log annual streamflow maxima at 489 locations.
Source: USGS Hydro Climatic Data Network (HCDN).

• Extremal streamflow is a key measure of flood risk
• Quantifying how the probability and magnitude of extreme
flooding events are changing is key to mitigating their impacts
under changing climate 2



Max-stable processes for spatial extremes

• Gaussian processes (GP) are inadequate for modeling extremes
• Max-stable processes (MSP) are a natural model for block
maxima, :

• Intractable likelihood for even moderately large problems
• Restrictive in the class of dependence types they can incorporate

• Approximation - Composite Likelihood1

• Inefficient, finite sample bias, computational challenges for large
• Approximation - Vecchia approximation

• Simplifies likelihoods for spatial processes including MSPs2

1Padoan (2010)
2Huser (2022)
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Objectives

• For large spatial extremes datasets, we want:
• Expressive and flexible spatial processes
• Computational strategies for intractable likelihoods

• Our approach - Process mixture model specified as a convex
combination of a GP and an MSP

• Vecchia approximation simplifies likelihood as a product of
univariate (intractable) PDFs

• Deep learning to approximate the intractable PDFs
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The Process Mixture Model



The process mixture model (PMM)

• Let (s) be the extreme observation at spatial location s with a
generalized extreme value (GEV) distribution:

(s) � GEVf�(s); �(s); �(s)g

• (s) � s, (s) = s( (s)), and express the joint likelihood as

( 1; :::; ; �1; �2) = ( 1; :::; ; �2)
Y
=1

���� s( ; �1)
���� ; (1)

where � (s ) and = s( ; �1)

• Take (s) = f (s)g to get spatial dependence model on (s)

(s) = � � f (s)g + (1� �) � f (s)g (2)
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Spatial dependence in the PMM

• Take (s) = f (s)g to get spatial dependence model on (s)

(s) = � � f (s)g + (1� �) � f (s)g

• (s) is an MSP, (s) is a GP; � 2 [0; 1]
• Conditional exceedance probability defined as:

� (s1; s2) := Probf (s1) > j (s2) > g

• �(s1; s2) = lim !1 � (s1; s2) > 0 iff � > 0:5 =) asymptotic
dependence

• f (s)g; f (s)g � Exponential(1)
• Process mixture (s) - hypoexponential distribution marginally
• Generalization of .
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Deep Learning Vecchia approximation for the PMM

• Joint likelihood:
( 1; :::; ; �1; �2) = ( 1; :::; ; �2)

Q
=1

���� s( ;�1)
����

• Approximate the first term of the likelihood as3

( 1; :::; ; �2) =
Y
=1

( j�2; 1; :::; �1) �
Y
=1

( j�2; ( )); (3)

for ( ) = f ; 2 N g and neighboring set N � f1; :::; � 1g
• ( ): Vecchia neighboring set.

3Vecchia (1988), Stein (2004), Datta (2016), Katzfuss and Guinness (2021)
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Deep Learning Vecchia approximation for the PMM

Figure 2: Vecchia neighboring sets when locations are ordered by distance
from origin

• The Vecchia neighboring set has up to 10 locations in this
example

• No analytical form for ( j�2; ( ))
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Deep Learning Vecchia approximation for the PMM

• Model ( j�2; ( )) using semi parametric quantile regression
(SPQR)4 as:

( jx ; W ) =
X

=1

� (x ; W ) � ( ) (4)

• M-spline basis functions ( ) � 0: satisfy
R

( ) = 1 for all k
• Probability weights � (x ; W): softmax outputs from a
feed-forward neural network (FFNN)

• Can approximate conditional densities smooth in its arguments5

4Xu and Reich (2021)
5Chui (1980), Hornik (1989)
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SPQR implementation

• Each ( jx ; W ) is modeled using its own FFNN; x := (�2; ( ))

• FFNN weights W for location estimated using synthetic data
generated using plausible parameter values

• Parameter estimation carried out afterwards using MCMC

10



Numerical Results



Simulation Study - Process Mixture Model

Figure 3: Locations used in the EVP simulation studies: 50 locations, and
nearest neighbor assignments for locations 16 (left) and 45 (right).

• Common smoothness parameter � = � = � = 1
• Range � = � , � = 0:19�

• Range chosen such that distance at which GP correlation
reaches 0.05 = distance at which � (s1; s2) for MSP is 0.05, where

� (s1; s2) := Probf (s1) > j (s2) > g
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SPQR model fit diagnostics - PMM

(a) Q-Q plots for checking
goodness of fit.

(b) Variable importance of �,
�, and nearest neighbors.

Figure 4: Model diagnostics for process mixture model: Q-Q plot and VI plot.

SPQR settings: 50 epochs, batch size 100, learning rate 0.001, 2
hidden layers (30, 15 neurons), 15 output knots, 106 obs.
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SPQR model fit diagnostics

Figure 5: Sampling distribution of posterior means: Horizontal dashed lines
are true values with empirical coverage of the 95% intervals at the bottom.

• Scenario 5: MCAR with probability � = 0:05 and censored below
the threshold = ^0.5 (over space and time)
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Case Study: Extreme Streamflow



Case study: extreme streamflow data

Figure 6: Sample 0.9 quantile of log annual streamflow maxima ( ) at 489 locations.

• 489 locations across the US part of the USGS Hydro-Climatic
Data Network (HCDN)

• 50 years of complete data from 1972–2021 - annual streamflow
maxima
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Spatio-temporally varying coefficients model for the marginals

• (s): log annual maxima for year , location s
• GEV marginals with spatio-temporally varying coefficients (STVC):

(s) � GEV [�0(s) + �1(s) ; expf�(s)g; �(s)] ; (5)

= (year � 1996:5)=10 for year = 1972+ � 1
• captures changes in the location due to changing climate
• (�0(s); �1(s); �(s); �(s)) � GPs with common range parameter ��

• FFNN architecture: 15 neighbors, 2 hidden layers (30, 20
neurons), 15 output knots, batch size 1000, learning rate 0.01, 50
epochs
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Posterior estimates

Posterior means and SD of spatial parameter estimates:

• �̂ : 0:47 (0:02); �̂ : 1004 (80); ^ : 0:56 (0:07); �̂� : 17907 (1806)

• Asymptotic independence regime with high probability

•
Figure 7: Posterior mean of �1(s) at 489 gauges for log annual streamflow
maxima.

• Positive values of �1 indicate increasing streamflow maxima 16



Posterior estimates

Figure 8: Estimates of [�1(s) > 0] for the GEV location parameters.

• Higher values indicate stronger evidence of increased
streamflow magnitude between 1972 and 2021

• Joint exceedances can be studied for clusters; e.g. in CO,
posterior probability that 0.9 quantile has gone up is 0.975
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Summary and Discussion

• Extreme value analysis of climate signals is of growing
importance, but existing methods are often intractable

• The process mixture model identifies patterns of increasing
streamflow due to changing climate within the US

• Flexible, tractable, parallelizable, can take advantage of GPU
acceleration

• Main idea can be applied to virtually any spatial process

18



https://cran.r-project.org/package=SPQR
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