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Overview

Motivation: The central US (CUS) corresponds to 2 HUC-02 regions (10L and

11), and is characterized by severe convective storms [5], and precipitation trends

that could potentially influence flooding. Extreme streamflow is a key indicator of

flood risk; quantifying the changes in its distribution under non-stationary climate

conditions is key to mitigating the impact of flooding events.
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Figure 1. 0.99 quantiles of annual streamflow maxima at 55 CUS HCDN stations.

Challenges: Expressive spatial extremes processes often have intractable likeli-

hoods, making computation challenging.

Goal: Develop a flexible and tractable spatial extremes model for climate-informed

estimation of annual streamflow maxima.

Datasets: Annual streamflow maxima from HCDN (1972–2021), annual/sea-

sonal precipitation from NClimGrid (1972–2021) as covariates, downscaled/bias-

corrected precipitation fromMACA (1972–2035) for projections.

The non-stationary process mixture model (NPMM)

Let Yt(s) be the extreme observation at time t and spatial location s:
Yt(s) ∼ GEV{µt(s), σt(s), ξt(s)}.

GEV parameters vary spatially and depend on precipitation:

µt(s) = µ0(s) +
5∑

i=1
µi(s)Xit(s), σt(s) = σ(s), ξt(s) = ξ(s). (1)

Xit(s) includes seasonal (location-specific) and annual precipitation (regional).

Given streamflow data (y1:n), marginal parameters (θ1), and spatial parameters (θ2),

our Bayesian hierarchical model is:

Prior model: θ1 ∼ p(θ1) ⊥ θ2 ∼ p(θ2),

Data model: fy(y1, ..., yn|θ1, θ2) = fu(u1, ..., un|θ2)︸ ︷︷ ︸
spatial dependence

n∏
i=1

∣∣∣∣dF (yi|θ1)
dyi

∣∣∣∣︸ ︷︷ ︸
marginal GEV likelihoods

.

The likelihood decomposition can be viewed as a change-of-variables, or a copula.

Ut(s) := Ft,s
(
Yt(s)

)
are spatially-correlated uniform variables. A spatial dependence

model on Ut(s) is obtained via the transformation Ut(s) = Gt,s
(
Vt(s)

)
:

Vt(s) = δt(s)Rt(s) + (1 − δt(s))Wt(s), (2)

where Rt(s) is a max-stable process, Wt(s) is a Gaussian process,

δt(s) ∈ [0, 1] are weight parameters depending on regional annual precipitation.

We use δ1 and δ2 for the 2 regions within the CUS.

Eqn. (2) defines the NPMM. No closed form available for the likelihood.

Extreme streamflowdistribution and projections for the CUS

δ1, δ2, corresponding to HUC-02 regions 10L and 11, do not change with

changes in basin-wide annual precipitation

δ1, δ2 have posterior means of 0.53 and 0.71 (asymptotically dependent)

Precipitation is a significant predictor of streamflow maxima

Summer (AMJ) precipitation is the most significant predictor at most locations.
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Figure 2. Estimates of µ(s) = max(µj(s)) for j = 2 : 5 corresponding to the 4

seasons with shapes denoting the season with the highest slope value (left), and

number of seasons (excluding annual) where P[µ(s) > 0] > 0.90 (right).

6 CMIP5 models chosen for each representative climate pathway (RCP) scenario

(3 wet + 3 dry). Baseline period of 1972–2005, projection period of 2006–2035.

CNRM−CM5 CSIRO−Mk3−6−0 MRI−CGCM3

IPSL−CM5A−MR HadGEM2−ES365 inmcm4
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Figure 3. Percentage change in observed 0.90 quantile under RCP 8.5 between

baseline and projection periods.

Changes from -10.3%–12.3% for the 0.90 quantile of annual streamflow maxima.

All 6 models under RCP 4.5 and 4 models under RCP 8.5 estimate that more than

50% locations have increased streamflow in the projection period.

Less pronounced but similar results for 0.99 quantile.

Future work: Additional covariates (e.g., temperature), long term forecasts.

Inference for the NPMM

Problem: Evaluate the intractable NPMM likelihood for different values of θ2 and

(y1, . . . , yn) without knowing its functional form.

Approach: Density estimation of a surrogate likelihood based on a Vecchia de-

composition [3] of the joint distribution fu(u1, ..., un|θ2):

fu(u1, ..., un|θ2) =
n∏

i=1
fi(ui|θ2, u1, ..., ui−1) ≈

n∏
i=1

fi(ui|θ2, u(i)), (3)

u(i) ⊆ {u1, . . . , ui−1}. The subset of locations s(i) are often the nearest neighbors.

Density regression is carried out for each of the n − 1 terms separately using

neural networks in a semi-parametric quantile regression (SPQR) model [4]:

fi(ui|xi, W) =
K∑

k=1

πik(xi, Wi)Bk(ui), (4)

πik(xi, Wi) = fNN
i (xi, Wi), for i = 2, . . . , n. (5)

xi = (u(i), θ2) are treated as covariates, with ui as the response variable

Each NN maximizes the log-likelihood of a univariate conditional (RHS of (4))

NNs are trained using synthetic data

Given a value of θ2 and u(i) = F (y(i)), we can then evaluate fu(u1, ..., un|θ2) as a
product of surrogate conditional distributions

Can be used in an MCMC to estimate θ1 and θ2.

Extremal spatial dependence often measured in terms of the upper-tail coefficient:

χu(s1, s2) := Prob{U(s1) > u|U(s2) > u}, (6)

where u ∈ (0, 1) is a threshold. U(s1) and U(s2) are defined as asymptotically

dependent if

χ(s1, s2) = lim
u→1

χu(s1, s2) (7)

is positive and independent if χ(s1, s2) = 0. For the PMM/NPMM [1, 2],

δ < 0.5 =⇒ asymptotic independence, and

δ > 0.5 =⇒ asymptotic dependence.

The NPMM is flexible (desirable asymptotic properties), and tractable (computa-

tional cost increases linearly in number of locations).
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