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Motivation
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Figure 1: 0.99 quantiles of seasonal precipitation for each HCDN site. Source: NClimGrid.

• The Central US (CUS) is characterized by severe convective storms, and
precipitation trends that could potentially influence flooding

• Extreme streamflow is a key indicator of flood risk
• The USGS Hydro Climatic Data Network (HCDN) provides streamflow data for
watersheds which are minimally impacted by anthropogenic activity.
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Goals
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Figure 2: Sample 0.99 quantile of annual streamflow maxima from 1972–2021. Source: HCDN.

• HCDN data for the CUS: 55 watersheds across HUC-02 Regions 10L and 11
• Challenge: Expressive spatial extremes processes often have intractable
likelihoods, making computation challenging.

• Goal: Develop a flexible and tractable spatial extremes model for
climate-informed estimation of annual streamflow maxima.
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Marginal distribution of streamflow maxima

Let the annual streamflow maxima for year t and site s following a generalized
extreme value distribution:

Yt(s) ∼ GEV{µt(s), σt(s), ξt(s)},

whose cumulative distribution function (CDF) Ft,s(y) := P[Yt(s) < y] is

P
[
Yt(s) < y

]
= exp

{
−

[
1+ ξt(s)

( y− µt(s)
σt(s)

)]−1/ξt(s)}
. (1)

The CDF is defined over the set
{
y : 1+ ξt(s)(y− µt(s))/σt(s) > 0

}
Let Z1t and Z2t be the annual precipitation for the two HUC-02 regions (10L and 11);
define X1t(s) as:

X1t(s) = I{s ∈ Region 10L}Z1t + I{s ∈ Region 11}Z2t

Denote Xit(s), i = 2, . . . , 5 as the seasonal precipitation for site s for year t.

GEV parameters vary spatially and depend on precipitation:

µt(s) = µ0(s) +
5∑
i=1

µi(s)Xit(s), σt(s) = σ(s), ξt(s) = ξ(s). (2)
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The joint distribution of extreme streamflow

Given streamflow data (y1:n), marginal parameters (θ1), and spatial process parameters
(θ2), our Bayesian hierarchical model is:

Prior model: θ1 ∼ p(θ1) ⊥ θ2 ∼ p(θ2),

Data model: fy(y1, ..., yn|θ1,θ2) = fu(u1, ..., un|θ2)︸ ︷︷ ︸
spatial dependence

n∏
i=1

∣∣∣∣dF(yi|θ1)dyi

∣∣∣∣︸ ︷︷ ︸
marginal GEV likelihoods

.

The CDF transformed variables Ut(s) := Ft,s
(
Yt(s)

)
share common uniform marginal

distributions but are spatially correlated

This change-of-variables in the likelihood separates residual spatial dependence in
Ut(s) from spatial dependence induced by spatial variation in the GEV parameters.

The latter is modeled using Gaussian process priors on the components of θ1
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The non-stationary process mixture model (NPMM)

A spatial dependence model on Ut(s) is obtained via the transformation
Ut(s) = Gt,s

(
Vt(s)

)
:

Vt(s) = δt(s)Rt(s) + (1− δt(s))Wt(s), (3)

where Rt(s) is a max-stable process, Wt(s) is a Gaussian process. We call this a
process mixture model

δt(s) ∈ [0, 1] are weight parameters depending on regional annual precipitation,

δt(s) = I{s ∈ Region 10L}δ1t + I{s ∈ Region 11}δ2t (4)
g−1(δit) = βi0 + βi1Zit, i = 1, 2. (5)

Dependence of δt(s) on precipitation introduces non-stationarity1

If δt(s) = δ, the NPMM simplifies to a stationary PMM2

1Majumder and Reich (2023), Spat. Stat.
2Majumder, Reich, and Shaby (2022), arXiv:2208.03344. Huser and Wadsworth (2019), J. Am. Stat. Assoc.
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Asymptotic properties of the NPMM

Extremal spatial dependence often measured in terms of the upper-tail coefficient:

χu(s1, s2) := Prob{U(s1) > u|U(s2) > u}, (6)

where u ∈ (0, 1) is a threshold. U(s1) and U(s2) are defined to be asymptotically
dependent if

χ(s1, s2) = lim
u→1

χu(s1, s2) (7)

is positive, and independent if χ(s1, s2) = 0. For the PMM/NPMM,

δ < 0.5 =⇒ asymptotic independence, and

δ > 0.5 =⇒ asymptotic dependence

Inference involves a Vecchia approximated density regression (VADeR) approach for
the intractable joint likelihood
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Inference for the NPMM

1. Use a Vecchia approximation3 to approximate the joint likelihood as:

fu(u1, ..., un|θ2) =
n∏
i=1

fi(ui|θ2, u1, ..., ui−1) ≈
n∏
i=1

fi(ui|θ2, u(i)), (8)

u(i) ⊆ {u1, . . . , ui−1}. The subset of locations s(i) are often the nearest neighbors
2. Obtain density estimates of each term fi(ui|θ2, u(i)) using a semi-parametric
quantile regression (SPQR) model4

3. Use the surrogate likelihood in a Bayesian framework to obtain posterior
estimates of θ1 and θ2

3Vecchia (1988), J. R. Stat. Soc. B. Stein, Chi, and Welty (2004), J. R. Stat. Soc. B.
4Xu and Reich (2021), Biometrics
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Posterior of spatial process parameters for extreme streamflow

Precipitation and streamflow for HUC-02 regions 10L and 11 from 1972–2021:

Left: Time series of annual NClimGrid precipitation (in mm)

Right: Posterior means of δ1t and δ2t corresponding to regions 10L and 11
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δ1t and δ2t do not change with changes in basin-wide annual precipitation

δ1t, δ2t have posterior means of 0.53 and 0.71 for the 50 year period (asymptotically
dependent)
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Posterior of GEV distribution parameters for extreme streamflow

• Precipitation is a significant predictor of streamflow maxima
• Spring (AMJ) precipitation is the most significant predictor at most locations.
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Figure 3: Estimates of µ(s) = max(µj(s)) for j = 2 : 5 corresponding to the 4 seasons with shapes
denoting the season with the highest slope value (left), and number of seasons (excluding annual)
where P[µ(s) > 0] > 0.90 (right).

Scale and shape parameters estimates also show spatial variation

Posterior mean of shape parameter is positive at 54 out of 55 locations
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Streamflow projections for the CUS
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We use bias-corrected climate model precipitation output from CMIP55 as covariates
in the posterior predictive distribution of streamflow maxima to get projections for
2006–2035

6 CMIP5 models (3 wet + 3 dry) considered for each representative climate pathway
(RCP) scenario, viz. RCP 4.5 and RCP 8.5

5Taylor, Stouffer, and Meehl (2012), B. Am. Meteorol. Soc.

11



Streamflow projections for the CUS
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Figure 4: Percentage change in observed 0.90 quantile under RCP 4.5. Triangles denote an increase
while circles denote a decrease.

We compare annual streamflow maxima for 2006–2035 against 1972–2005

Changes from -10.3% to 12.3% for the 0.90 quantile of annual streamflow maxima
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Streamflow projections for the CUS
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Figure 5: Percentage change in observed 0.90 quantile under RCP 8.5. Triangles denote an increase
while circles denote a decrease.

All 6 models under RCP 4.5 and 4 models under RCP 8.5 estimate that more than 50%
locations have increased streamflow in the projection period.

Less pronounced but similar results for the 0.99 quantile
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Summary

• Significance: Precipitation is estimated to be a significant predictor of extremal
streamflow in the CUS and shows a strong seasonal component

• Non-stationarity: The asymptotic dependence properties of the two HUC-02
regions are estimated to be different from each other, and each show
inter-annual variability

• Projections: Annual streamflow maxima is projected to increase in the near future
• Methodology: The NPMM is flexible (desirable asymptotic properties), and
tractable (computational cost increases linearly in number of locations).
The density estimation approach can be used for any intractable spatial process

• Brian’s talk (Tuesday afternoon) will go into more details of the methodology

Acknowledgments: Southeast National Synthesis Wildfire and National Climate
Adaptation Science Center (G21AC10045), NSF (DMS2152887, CBET2151651, DMS1929348).
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Vecchia approximation of intractable likelihood

Problem: Evaluate the NPMM likelihood for any values of θ2 and (y1, . . . , yn)

Approach: Density estimation of surrogate univariate conditional likelihoods based on
a Vecchia decomposition of the joint distribution fu(u1, ..., un|θ2):

fu(u1, ..., un|θ2) =
n∏
i=1

fi(ui|θ2, u1, ..., ui−1) ≈
n∏
i=1

fi(ui|θ2, u(i)), (9)

u(i) ⊆ {u1, . . . , ui−1}. The subset of locations s(i) are often the nearest neighbors.
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Inference for the NPMM

Density regression is carried out for each of the n− 1 terms separately using neural
networks in a semi-parametric quantile regression (SPQR) model6 :

fi(ui|xi,W) =
K∑
k=1

πik(xi,Wi)Bk(ui), (10)

πik(xi,Wi) = fNNi (xi,Wi), for i = 2, . . . , n. (11)

• xi = (u(i),θ2) are treated as covariates, with ui as the response variable
• Each NN maximizes the log-likelihood of a univariate conditional (RHS of (10))
• NNs are trained using synthetic data (surrogate likelihood)
• Given a value of θ2 and u(i) = F(y(i)), we can then evaluate fu(u1, ..., un|θ2) as a
product of surrogate conditional distributions

• Can be used in an MCMC to estimate θ1 and θ2 .

6Xu and Reich (2021), Biometrics.
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