Variational Bayes for latent variable models

Reetam Majumder

STAT 740 Guest Lecture, Fall 2022

NC STATE UNIVERSITY

Some housekeeping

- We'll focus mainly on latent variable models
- Variational Bayes (VB) often term them local variables.
- Parameters are global variables
- The intuition (usually) is that the number of local variables grow with the data, while global variables have fixed dimension
- General notation:

$$
\begin{aligned}
y, x & :=\text { observations/covariates } \\
s & :=\text { hidden/latent variables } \\
\theta & :=\text { parameters } \\
z & :=(s, \theta) \\
p(\cdot) & :=\text { prior/likelihood/posterior } \\
q(\cdot) & :=\text { variational posterior }
\end{aligned}
$$

VB vs. MCMC

- MCMC used when you don't have a closed form for the posterior, but can sample from it ${ }^{1}$
- Idea: Get samples to approximately reconstruct the exact posterior.
- Pros: Uncertainty, theoretical guarantees. Cons: slow
- What if we consider an approximate posterior in a 'nice' family that we can work with analytically?
- Might be good enough if all we care are about point estimates (posterior means, in particular)

[^0]
Example: Gaussian mixture model

$$
\begin{aligned}
p\left(y_{i} \mid s_{i}, \theta\right) & =\sum_{j=1}^{k} c_{j} \cdot \operatorname{Normal}\left(y_{i} \mid \mu_{j}, \sigma^{2}\right), i=1: n \\
p\left(s_{i} \mid c_{1: K}\right) & =\operatorname{Categorical}\left(s_{j} \mid c_{1}, \ldots, c_{K}\right) \\
p\left(\mu_{j}\right) & =\operatorname{Normal}\left(\mu_{j} \mid m_{j}, \tau^{2}\right) \\
p\left(c_{1: K}\right) & =\operatorname{Dirichlet}\left(c_{1} \ldots, c_{K} \mid \alpha_{1} \ldots, \alpha_{K}\right)
\end{aligned}
$$

- Global variables: $\theta=\left(\mu_{1: K}, c_{1: K}\right)$ tend to usually be of fixed dimension
- Local variables: S_{i} control the cluster assignments, dimension grows with size of data

The posterior is:

$$
p(\mu, s, c \mid y)=\frac{p\left(c_{1: k}\right) \prod_{j=1}^{K} p\left(\mu_{j}\right) \prod_{i=1}^{n} p\left(s_{i}\right) p\left(y_{i} \mid s_{i}, \theta\right)}{\int_{\mu_{1: K}} \sum_{z_{1: n}} p\left(c_{1: K}\right) \prod_{j=1}^{K} p\left(\mu_{j}\right) \prod_{i=1}^{n} p\left(s_{i}\right) p\left(y_{i} \mid s_{i}, \theta\right)}
$$

Example: Hidden Markov model

- $p\left(y_{t} \mid s_{t j}, \theta\right)=$ Categorical $\left(y_{t} \mid c_{j 1}, \ldots, c_{j M}\right)$, where $s_{t j}=\mathbb{I}\left(S_{t}=j\right)$
- $S_{1: T}$ is a Markov chain parameterized by $\pi_{1}=\operatorname{Pr}\left[S_{1}=j\right]$, and $A:=\left(\left(a_{j k}\right)\right)$, where $a_{j k}=\operatorname{Pr}\left[s_{t+1}=k \mid s_{t}=j\right], j, k=1: K$
- $p(C)=\prod_{j=1}^{K} \operatorname{Dirichlet}\left(c_{j, 1: M} \mid \zeta_{1}, \ldots, \zeta_{M}\right)$
- $p(A)=\prod_{j=1}^{K} \operatorname{Dirichlet}\left(a_{j, 1::} \mid \alpha_{1}, \ldots, \alpha_{K}\right)$
- Global variables $\theta=(C, A)$, local variables $S_{1: T}$

Example: Text prediction. MCMC for HMMs is non-trivial at best and prohibitive for many real cases.

Models without latent variables

Linear regression

- Global variables $\left(\theta_{j}, \sigma^{2}\right)$
- $p\left(\theta_{j}\right)=\operatorname{Normal}\left(\theta_{j} \mid \mu_{j}, \tau^{2}\right)$

Logistic regression

- Global variable θ_{j}
- $p\left(\theta_{j}\right)=\operatorname{Normal}\left(\theta_{j} \mid \mu_{j}, \tau^{2}\right)$

Bayesian neural networks aren't necessarily latent variable models, they're just plain intractable.

VB as optimization

Aim : Approximate the exact posterior $p(z \mid y)$

1. Posit a family of approximate distributions \mathbb{Q} with its own variational parameters
2. Optimize over this family to find the parameter settings which minimize the KL divergence from the exact posterior

$$
q(\tilde{z})=\arg \min _{q(z \mid \nu) \in \mathbb{Q}} K L(q(z \mid \nu) \| p(z \mid y))
$$

Review of variational inference

- Minimizing KL-divergence \Longleftrightarrow maximizing evidence lower bound (ELBO)

$$
\operatorname{ELBO}(q)=\mathbb{E}[\log p(\mathrm{z}, \mathrm{y})]-\mathbb{E}[\log q(\mathrm{z})]
$$

- Analysis often restricted to a mean-field variational family \mathbb{Q}, where the latent variables and the parameters are all mutually independent

$$
q(\mathrm{z}) \approx \prod_{i} q_{i}\left(z_{i}\right)
$$

Each latent component z_{i} has its own variational marginal posterior, with free parameters/variational parameters that are optimized

More on the ELBO

$$
\begin{aligned}
\log p(y) & =\log \int_{z} p(y, z) \\
& =\log \int_{z} q(z) \frac{p(y, z)}{q(z)} \\
& =\log \mathbb{E}_{q}\left[\frac{p(y, z)}{q(z)}\right] \\
& \geq \mathbb{E}_{q}[\log p(y, z)]-\mathbb{E}_{q}[\log q(z)]
\end{aligned}
$$

- How did that last inequality happen?
- Other divergence metrics are also possible
- Using KL breaks this optimization problem into nice, manageable chunks

One last assumption before we we get to the optimization bit.

The mean field assumption

- At the very least, it assumes that the variational posteriors for the local and global variables are independent, i.e.

$$
q(\theta, s) \approx q_{\theta}(\theta) q_{s}(s)
$$

- Typically, the more you factorize, the simpler the optimization becomes, e.g. for the GMM example,

$$
q(\mu, s, c) \approx q\left(\mu_{1: K}\right) q\left(s_{1: K}\right) q\left(c_{1: k}\right)
$$

- The optimization is straightforward if things are in the conjugate-exponential family

VB optimization for conjugate exponential families

Most classical VB approaches lean on this ${ }^{2}$. Given that,
Condition 1: The complete data likelihood is in the exponential family:

$$
p(y, s \mid \theta)=f(y, s) g(\theta) \exp \left\{\phi(\theta)^{\top} u(y, s)\right\}
$$

Condition 2: The parameter prior is conjugate to the complete data likelihood:

$$
p(\theta \mid \nu, \eta)=h(\nu, \eta) g(\theta)^{\eta} \exp \left\{\phi(\theta)^{\top} \nu\right\}
$$

Note: $\phi(\theta)$ is the vector of natural parameters, η, ν are hyperparameters of the prior.

[^1]
VB optimization for conjugate exponential families

Theorem (1)

Given an iid data set $y=\left(y_{1}, \ldots, y_{n}\right)$, if the model satisfies the stated conditions, then at the minima of $K L(q \| p)$,

- $q_{\theta}(\theta)$ is conjugate and of the form:

$$
q_{\theta}(\theta)=h(\tilde{\eta}, \tilde{\nu}) g(\theta)^{\tilde{\eta}} \exp \left\{\phi(\theta)^{\top} \tilde{\nu}\right\}
$$

where $\tilde{\eta}=\eta+n, \tilde{\nu}=\nu+\sum_{i=1}^{n} \bar{u}\left(y_{i}\right)$, and $\bar{u}\left(y_{i}\right)=\mathbb{E}_{q} u\left(y_{i}, s_{i}\right)$.

- $q_{s}(s)=\prod_{i=1}^{n} q_{s_{i}}\left(s_{i}\right)$ and $q_{s_{i}}\left(s_{i}\right)$ is of the same form as the known parameter posterior:

$$
q_{s_{i}}\left(s_{i}\right) \propto f\left(y_{i}, s_{i}\right) \exp \left\{\bar{\phi}(\theta)^{T} u\left(y_{i}, s_{i}\right)\right\}=p\left(s_{i} \mid y_{i}, \bar{\phi}(\theta)\right)
$$

where $\bar{\phi}(\theta)=\mathbb{E}_{q}(\theta)$.

The VBEM algorithm

- VE Step: Compute the expected sufficient statistics $t(y)=\sum_{i} \bar{u}\left(y_{i}\right)$ under the hidden variable distributions $q_{s_{i}}\left(s_{i}\right)$.
- VM Step: Compute the expected natural parameters $\bar{\phi}(\theta)$ under the parameter distribution given by $\tilde{\eta}$ and $\tilde{\nu}$

Connection with Gibbs sampling: It's easy to show that a valid alternative expression for $q_{\theta_{i}}\left(\theta_{i}\right)$ is

$$
q_{\theta_{i}}\left(\theta_{i}\right) \propto \exp \left\{\mathbb{E}_{-\theta_{i}} \log p\left(\theta_{i} \mid \theta_{-i}, y, s\right),\right.
$$

viz, the full conditionals. A similar optimal density form can be see for $q_{s_{i}}\left(s_{i}\right)$ too. In situations where Gibbs sampling is viable, analytical VB posteriors are available under conjugacy.

Coordinate ascent VB

What would the VBEM algorithm look like for the GMM?

- VBM step:

$$
\begin{align*}
q_{\mu_{i}}\left(\mu_{i}\right) & \propto \exp \left\{\mathbb{E}_{-\mu_{i}} \log p\left(\mu_{i} \mid \cdot\right)\right\} \tag{1}\\
q_{c_{i}}\left(c_{i}\right) & \propto \exp \left\{\mathbb{E}_{-c_{i}} \log p\left(c_{i} \mid \cdot\right)\right\} \tag{2}
\end{align*}
$$

- VBE step:

$$
\begin{equation*}
q_{s_{i}}\left(s_{i}\right) \propto \exp \left\{\mathbb{E}_{-s_{i}} \log p\left(s_{i} \mid \cdot\right)\right\} \tag{3}
\end{equation*}
$$

ELBO guaranteed to increase at every step, and like the EM, will converge to a local maximum.
Questions:

1. Why is it called coordinate ascent?
2. What's the connection between this and the theorem before?
3. How does this lead to a stochastic implementation?

The Gaussian mixture model

Likelihood:

$$
\begin{aligned}
p\left(y_{i} \mid s_{i}, \theta\right) & =\sum_{j=1}^{K} c_{j} \cdot \operatorname{Normal}\left(y_{i} \mid \mu_{j}, \sigma^{2}\right), i=1: n \\
p\left(s_{i} \mid c_{i}\right) & =\prod_{j=1}^{K} c_{j}^{\mathbb{I}\left(s_{i}=j\right)}
\end{aligned}
$$

Priors:

$$
\begin{aligned}
p\left(\mu_{j}\right) & =\operatorname{Normal}\left(m_{j}, \tau^{2}\right) \\
p\left(c_{1: K}\right) & =\operatorname{Dirichlet}\left(c_{1} \ldots, c_{K} \mid \alpha_{1} \ldots, \alpha_{K}\right)
\end{aligned}
$$

Variational posteriors:

$$
\begin{aligned}
q\left(\mu_{j}\right) & =\operatorname{Normal}\left(\tilde{m}_{j}, \tilde{\tau}^{2}\right) \\
q\left(c_{1: K}\right) & =\operatorname{Dirichlet}\left(c_{1} \ldots, c_{K} \mid \tilde{\alpha}_{1} \ldots, \tilde{\alpha}_{K}\right)
\end{aligned}
$$

The Gaussian mixture model

Source: Blei et al. Variational inference: a review for statisticians. 2017. Code examples (RStudio/RPubs): Linear regression, probit regression, GMM.

What do we actually get out of this?

Figure 1. Visualizing the mean-field approximation to a two-dimensional Gaussian posterior. The ellipses show the effect of mean-field factorization. (The ellipses are 2σ contours of the Gaussian distributions.)

Source: Blei et al. Variational inference: a review for statisticians. 2017.

- Posterior means - the full variational posterior is not always a good representation of the true posterior
- (Approximate) predictive distribution, posterior covariances ${ }^{3}$
- The more we relax the mean field assumption, the better the approximation gets, with increasing computational cost

[^2]
Related reading and extensions

- M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul. An Introduction to Variational Methods for Graphical Models. 1999.
- D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians. 2017.
- M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. 2013.
- R. Ranganath, S. Gerrish, and D. M. Blei. Black Box Variational Inference. 2013.
- Y. Yang, D. Pati, and A. Bhattacharya. α-variational inference with statistical guarantees. 2017.
- Y. Gal and Z. Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. 2015.

Dropout as a Bayesian approximation

- Bayesian NNs can get intractable very easily
- Using dropout in your NN architecture is equivalent to a variational approximation
- Implementation is pretty straightforward. But first some basics.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

Source: Srivastava et al. Dropout: a simple way to prevent neural networks from overfitting. 2014.

Dropout as Bayesian approximation

- How is dropout actually implemented in NNs?
- Sample iid Bernoulli $\left(p_{i}\right)$ variables for every input point in layer i
- A unit is dropped if the Bernoulli variable takes value 0
- The dropout objective minimizes KL divergence between an approximate distribution and the posterior of a deep Gaussian process
- Predictive distribution moments:
- Perform T stochastic forward passes through the network
- Average the results - that's the first moment (and so on).

[^0]: ${ }^{1} h t t p s: / / w w w 4 . s t a t . n c s u . e d u / \sim b j r e i c h / S T 740 / M i x N o r m a l . h t m l$

[^1]: ${ }^{2} h t t p s: / / p a p e r s . n i p s . c c / p a p e r / 2000 / f i l e /$
 77369e37b2aa1404f416275183ab055f-Paper.pdf

[^2]: ${ }^{3}$ Giordano et al. Covariances, Robustness, and Variational Bayes. 2018.

