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Some housekeeping

• We’ll focus mainly on latent variable models
• Variational Bayes (VB) often term them local variables.
• Parameters are global variables
• The intuition (usually) is that the number of local variables grow
with the data, while global variables have fixed dimension

• General notation:

y, x := observations/covariates
s := hidden/latent variables
θ := parameters
z := (s, θ)

p(·) := prior/likelihood/posterior
q(·) := variational posterior
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VB vs. MCMC

• MCMC used when you don’t have a closed form for the posterior,
but can sample from it1

• Idea: Get samples to approximately reconstruct the exact
posterior.

• Pros: Uncertainty, theoretical guarantees. Cons: s l o w
• What if we consider an approximate posterior in a ‘nice’ family
that we can work with analytically?

• Might be good enough if all we care are about point estimates
(posterior means, in particular)

1https://www4.stat.ncsu.edu/~bjreich/ST740/MixNormal.html
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Example: Gaussian mixture model

p(yi|si, θ) =
K∑
j=1

cj · Normal(yi|µj, σ2), i = 1 : n

p(si|c1:K) = Categorical(si|c1, . . . , cK)
p(µj) = Normal(µj|mj, τ

2)

p(c1:K) = Dirichlet(c1 . . . , cK|α1 . . . , αK)

• Global variables: θ = (µ1:K, c1:K) tend to usually be of fixed
dimension

• Local variables: Si control the cluster assignments, dimension
grows with size of data

The posterior is:

p(µ, s, c|y) =
p(c1:K)

∏K
j=1 p(µj)

∏n
i=1 p(si)p(yi|si, θ)∫

µ1:K

∑
z1:n p(c1:K)

∏K
j=1 p(µj)

∏n
i=1 p(si)p(yi|si, θ) 4



Example: Hidden Markov model
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• p(yt|stj, θ) = Categorical(yt|cj1, . . . , cjM), where stj = I(St = j)
• S1:T is a Markov chain parameterized by π1 = Pr[s1 = j], and
A := ((ajk)), where ajk = Pr[st+1 = k|st = j], j, k = 1 : K

• p(C) =
∏K

j=1 Dirichlet(cj,1:M|ζ1, . . . , ζM)
• p(A) =

∏K
j=1 Dirichlet(aj,1:K|α1, . . . , αK)

• Global variables θ = (C,A), local variables S1:T

Example: Text prediction. MCMC for HMMs is non-trivial at best and
prohibitive for many real cases.

5



Models without latent variables

Linear regression

• Global variables (θj, σ2)
• p(θj) = Normal(θj|µj, τ 2)

Logistic regression

• Global variable θj

• p(θj) = Normal(θj|µj, τ 2)

Bayesian neural networks aren’t necessarily latent variable models,
they’re just plain intractable.
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VB as optimization

Aim : Approximate the exact posterior p(z|y)

1. Posit a family of approximate distributions Q with its own variational
parameters

2. Optimize over this family to find the parameter settings which minimize
the KL divergence from the exact posterior

q(z̃) = argminq(z|ν)∈QKL
(
q(z|ν) ∥ p(z|y)

)
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Review of variational inference

• Minimizing KL-divergence ⇐⇒ maximizing evidence lower
bound (ELBO)

ELBO(q) = E[log p(z, y)]− E[log q(z)]

• Analysis often restricted to a mean-field variational family Q,
where the latent variables and the parameters are all mutually
independent

q(z) ≈
∏
i

qi(zi)

Each latent component zi has its own variational marginal
posterior, with free parameters/variational parameters that are
optimized
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More on the ELBO

log p(y) = log

∫
z
p(y, z)

= log

∫
z
q(z)p(y, z)q(z)

= logEq
[
p(y, z)
q(z)

]
≥ Eq[log p(y, z)]− Eq[log q(z)]

• How did that last inequality happen?
• Other divergence metrics are also possible
• Using KL breaks this optimization problem into nice,
manageable chunks

One last assumption before we we get to the optimization bit.
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The mean field assumption

• At the very least, it assumes that the variational posteriors for
the local and global variables are independent, i.e.

q(θ, s) ≈ qθ(θ)qs(s)

• Typically, the more you factorize, the simpler the optimization
becomes, e.g. for the GMM example,

q(µ, s, c) ≈ q(µ1:K)q(s1:K)q(c1:K)

• The optimization is straightforward if things are in the
conjugate-exponential family
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VB optimization for conjugate exponential families

Most classical VB approaches lean on this2. Given that,
Condition 1: The complete data likelihood is in the exponential
family:

p(y, s|θ) = f(y, s)g(θ) exp{ϕ(θ)Tu(y, s)}

Condition 2: The parameter prior is conjugate to the complete data
likelihood:

p(θ|ν, η) = h(ν, η)g(θ)η exp{ϕ(θ)Tν}

Note: ϕ(θ) is the vector of natural parameters, η, ν are
hyperparameters of the prior.

2https://papers.nips.cc/paper/2000/file/
77369e37b2aa1404f416275183ab055f-Paper.pdf
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VB optimization for conjugate exponential families

Theorem (1)
Given an iid data set y = (y1, . . . , yn), if the model satisfies the stated
conditions, then at the minima of KL(q||p),

• qθ(θ) is conjugate and of the form:

qθ(θ) = h(η̃, ν̃)g(θ)η̃ exp{ϕ(θ)Tν̃},

where η̃ = η + n, ν̃ = ν +
∑n

i=1 ū(yi), and ū(yi) = Equ(yi, si).
• qs(s) =

∏n
i=1 qsi(si) and qsi(si) is of the same form as the known

parameter posterior:

qsi(si) ∝ f(yi, si) exp{ϕ̄(θ)Tu(yi, si)} = p(si|yi, ϕ̄(θ)),

where ϕ̄(θ) = Eq(θ).
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The VBEM algorithm

• VE Step: Compute the expected sufficient statistics
t(y) =

∑
i ū(yi) under the hidden variable distributions qsi(si).

• VM Step: Compute the expected natural parameters ϕ̄(θ) under
the parameter distribution given by η̃ and ν̃

Connection with Gibbs sampling: It’s easy to show that a valid
alternative expression for qθi(θi) is

qθi(θi) ∝ exp{E−θi log p(θi|θ−i, y, s),

viz, the full conditionals. A similar optimal density form can be see
for qsi(si) too. In situations where Gibbs sampling is viable, analytical
VB posteriors are available under conjugacy.
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Coordinate ascent VB

What would the VBEM algorithm look like for the GMM?

• VBM step:

qµi(µi) ∝ exp{E−µi log p(µi|·)} (1)
qci(ci) ∝ exp{E−ci log p(ci|·)} (2)

• VBE step:

qsi(si) ∝ exp{E−si log p(si|·)} (3)

ELBO guaranteed to increase at every step, and like the EM, will
converge to a local maximum.
Questions:

1. Why is it called coordinate ascent?
2. What’s the connection between this and the theorem before?
3. How does this lead to a stochastic implementation?
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The Gaussian mixture model

Likelihood:

p(yi|si, θ) =
K∑
j=1

cj · Normal(yi|µj, σ2), i = 1 : n

p(si|ci) =
K∏
j=1

cI(si=j)j

Priors:

p(µj) = Normal(mj, τ
2)

p(c1:K) = Dirichlet(c1 . . . , cK|α1 . . . , αK)

Variational posteriors:

q(µj) = Normal(m̃j, τ̃
2)

q(c1:K) = Dirichlet(c1 . . . , cK|α̃1 . . . , α̃K)
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The Gaussian mixture model

Source: Blei et al. Variational inference: a review for statisticians. 2017.
Code examples (RStudio/RPubs): Linear regression, probit regression, GMM.
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What do we actually get out of this?

Source: Blei et al. Variational inference: a review for statisticians. 2017.

• Posterior means - the full variational posterior is not always a good
representation of the true posterior

• (Approximate) predictive distribution, posterior covariances3

• The more we relax the mean field assumption, the better the
approximation gets, with increasing computational cost

3Giordano et al. Covariances, Robustness, and Variational Bayes. 2018.
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Related reading and extensions

• M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul. An
Introduction to Variational Methods for Graphical Models. 1999.

• D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference:
A review for statisticians. 2017.

• M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic
variational inference. 2013.

• R. Ranganath, S. Gerrish, and D. M. Blei. Black Box Variational
Inference. 2013.

• Y. Yang, D. Pati, and A. Bhattacharya. α−variational inference
with statistical guarantees. 2017.

• Y. Gal and Z. Ghahramani. Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning. 2015.
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Dropout as a Bayesian approximation

• Bayesian NNs can get intractable very easily
• Using dropout in your NN architecture is equivalent to a
variational approximation

• Implementation is pretty straightforward. But first some basics.

Source: Srivastava et al. Dropout: a simple way to prevent neural networks
from overfitting. 2014. 19



Dropout as Bayesian approximation

• How is dropout actually implemented in NNs?
• Sample iid Bernoulli(pi) variables for every input point in layer i
• A unit is dropped if the Bernoulli variable takes value 0

• The dropout objective minimizes KL divergence between an
approximate distribution and the posterior of a deep Gaussian
process

• Predictive distribution moments:
• Perform T stochastic forward passes through the network
• Average the results - that’s the first moment (and so on).
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