./ongoing
- C. J. R. Murphy-Barltrop, R. Majumder, and J. Richards (2024). Deep learning of multivariate extremes via a geometric representation. arXiv:2406.19936.
- M. A. Abba, B. J. Reich, R. Majumder, and B. Feng (2024). Stochastic gradient MCMC for massive geostatistical data. arXiv:2405.04531.
- R. Majumder, B. A. Shaby, and B. J. Reich (2024). Introduction to Bayesian methods of extreme value analysis. In M. de Carvalho, R. Huser, P. Naveau, and B. J. Reich (Eds.), Handbook on Statistics of Extremes, to appear.
- R. Majumder, B. A. Shaby, B. J. Reich, and D.S. Cooley (2024). Semiparametric estimation of the shape of the limiting bivariate point cloud. arXiv:2306.13257.
- S. G. Xu, R. Majumder, and B. J. Reich (2022). SPQR: An R Package for Semi-Parametric Density and Quantile Regression. arXiv:2210.14482.
./peer reviewed
- A. Russell, N. Fontana, T. Hoecker, A. Kamanu, R. Majumder, J. Stephens, A. M. Young, A.E. Cravens, C. Giardina, J. K. Hiers, J. Littell, and A. J. Terando (2024). A fire-use decision model to improve the United States’ wildfire management and support climate change adaptation. Cell Reports Sustainability, 1(6):100125.
- R. Majumder, B. J. Reich, and B. A. Shaby (2024). Modeling extremal streamflow using deep learning approximations and a flexible spatial process. Annals of Applied Statistics, 18(2): 1519-1542.
- R. Majumder and B. J. Reich (2023). A deep learning synthetic likelihood approximation of a non-stationary spatial model for extreme streamflow forecasting. Spatial Statistics, 55:100755.
- R. Majumder, Q. Ji, and N.K. Neerchal (2023). Optimal stock portfolio selection with a multivariate hidden Markov model. Sankhya B, 85 (Suppl 1), 177-198.
- J. X. Xie, X. Fan, C. A. Drummond, R. Majumder, Y. Xie, T. Chen, L. Liu, S. T. Haller, P. S. Brewster, L. D. Dworkin, C. J. Cooper, and J. Tian (2017). MicroRNA profiling in kidney disease: Plasma versus plasma-derived exosomes. Gene, 627:1–8.
./conference proceedings
- R. Majumder, M. K. Gobbert, and N. K. Neerchal (2021). A modified minibatch sampling method for parameter estimation in hidden Markov models using stochastic variational Bayes. Proc. Appl. Math. Mech., 21(1):e202100203.
- G. C. Kroiz, R. Majumder, N. K. Neerchal, M. K. Gobbert, A. Mehta, and K. Markert (2020). Daily precipitation generation using a hidden Markov model with correlated emissions for the Potomac river basin. Proc. Appl. Math. Mech., 20(1):e202000117.
./software
BezELS
: Bezier splines for Estimating Limit Sets. [Github]
SPQR
: Semi-parametric quantile regression, developed by Steven G. Xu and me. [GitHub]